Siamese Network Tracker Based on Multi-Scale Feature Fusion

被引:0
作者
Zhao, Jiaxu [1 ]
Niu, Dapeng [1 ]
机构
[1] Northeastern Univ, Coll Informat Sci & Engn, Shenyang 110819, Peoples R China
关键词
visual object tracking; automated driving; deep learning; artificial intelligence; computer vision;
D O I
10.3390/systems11080434
中图分类号
C [社会科学总论];
学科分类号
03 ; 0303 ;
摘要
The main task in visual object tracking is to track a moving object in an image sequence. In this process, the object's trajectory and behavior can be described by calculating the object's position, velocity, acceleration, and other parameters or by memorizing the position of the object in each frame of the corresponding video. Therefore, visual object tracking can complete many more advanced tasks, has great performance in relation to real scenes, and is widely used in automated driving, traffic monitoring, human-computer interaction, and so on. Siamese-network-based trackers have been receiving a great deal of attention from the tracking community, but they have many drawbacks. This paper analyzes the shortcomings of the Siamese network tracker in detail, uses the method of feature multi-scale fusion to improve the Siamese network tracker, and proposes a new target-tracking framework to address its shortcomings. In this paper, a feature map with low-resolution but strong semantic information and a feature map with high-resolution and rich spatial information are integrated to improve the model's ability to depict an object, and the problem of scale change is solved by fusing features at different scales. Furthermore, we utilize the 3D Max Filtering module to suppress repeated predictions of features at different scales. Finally, our experiments conducted on the four tracking benchmarks OTB2015, VOT2016, VOT2018, and GOT10K show that the proposed algorithm effectively improves the tracking accuracy and robustness of the system.
引用
收藏
页数:24
相关论文
共 50 条
[1]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[2]   Fully-Convolutional Siamese Networks for Object Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Henriques, Joao F. ;
Vedaldi, Andrea ;
Torr, Philip H. S. .
COMPUTER VISION - ECCV 2016 WORKSHOPS, PT II, 2016, 9914 :850-865
[3]   Learning Discriminative Model Prediction for Tracking [J].
Bhat, Goutam ;
Danelljan, Martin ;
Van Gool, Luc ;
Timofte, Radu .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6181-6190
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]   Transformer Tracking [J].
Chen, Xin ;
Yan, Bin ;
Zhu, Jiawen ;
Wang, Dong ;
Yang, Xiaoyun ;
Lu, Huchuan .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8122-8131
[6]   Siamese Box Adaptive Network for Visual Tracking [J].
Chen, Zedu ;
Zhong, Bineng ;
Li, Guorong ;
Zhang, Shengping ;
Ji, Rongrong .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, :6667-6676
[7]   Learning to Filter: Siamese Relation Network for Robust Tracking [J].
Cheng, Siyuan ;
Zhong, Bineng ;
Li, Guorong ;
Liu, Xin ;
Tang, Zhenjun ;
Li, Xianxian ;
Wang, Jing .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :4419-4429
[8]   Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking [J].
Danelljan, Martin ;
Robinson, Andreas ;
Khan, Fahad Shahbaz ;
Felsberg, Michael .
COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 :472-488
[9]   LaSOT: A High-quality Benchmark for Large-scale Single Object Tracking [J].
Fan, Heng ;
Lin, Liting ;
Yang, Fan ;
Chu, Peng ;
Deng, Ge ;
Yu, Sijia ;
Bai, Hexin ;
Xu, Yong ;
Liao, Chunyuan ;
Ling, Haibin .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5369-5378
[10]  
Howard AG, 2017, Arxiv, DOI [arXiv:1704.04861, 10.48550/arXiv.1704.04861, DOI 10.48550/ARXIV.1704.04861]