EXPONENTIAL CONVERGENCE TO EQUILIBRIUM FOR COUPLED SYSTEMS OF NONLINEAR DEGENERATE DRIFT DIFFUSION EQUATIONS

被引:1
作者
Beck, Lisa [1 ]
Matthes, Daniel [2 ]
Zizza, Martina [3 ]
机构
[1] Univ Augsburg, Inst Math, D-86159 Augsburg, Germany
[2] Tech Univ Munich, Zentrum Math M8, D-80538 Garching, Germany
[3] SSISSA ISAS, I-34136 Trieste, TS, Italy
关键词
drift diffusion system; Wasserstein gradient flow; long time asymptotics; exponential convergence; CROSS-DIFFUSION; NONLOCAL INTERACTION; ENTROPY DISSIPATION; EVOLUTION-EQUATIONS; MODEL; FLOWS; MEDIA; DECAY;
D O I
10.1137/21M1466980
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence and long-time asymptotics of weak solutions to a system of two nonlinear drift-diffusion equations that has a gradient flow structure in the Wasserstein distance. The two equations are coupled through a cross-diffusion term that is scaled by a parameter \varepsilon\geq 0. The nonlinearities and potentials are chosen such that in the decoupled system for \varepsilon = 0, the evolution is metrically contractive, with a global rate \Lambda > 0\Lambda > 0. The coupling is a singular perturbation in the sense that for any \varepsilon > 0, contractivity of the system is lost. Our main result is that for all sufficiently small \varepsilon > 0, the global attraction to a unique steady state persists, with an exponential rate \Lambda\varepsilon = \Lambda -K\varepsilon for some k > 0. The proof combines results from the theory of metric gradient flows with further variational methods and functional inequalities.
引用
收藏
页码:1766 / 1809
页数:44
相关论文
共 46 条
  • [1] Agueh M, 2005, ADV DIFFERENTIAL EQU, V10, P309
  • [2] Alasio L, 2020, Arxiv, DOI arXiv:1906.08060
  • [3] Ambrosio L, 2008, LECT MATH, P1
  • [4] Barbaro ABT, 2021, Arxiv, DOI [arXiv:2009.04189, 10.48550/arXiv.2009.04189, DOI 10.48550/ARXIV.2009.04189]
  • [5] On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion
    Berendsen, Judith
    Burger, Martin
    Pietschmann, Jan-Frederik
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2017, 159 : 10 - 39
  • [6] A HYBRID VARIATIONAL PRINCIPLE FOR THE KELLER-SEGEL SYSTEM IN R2
    Blanchet, Adrien
    Carrillo, Jose Antonio
    Kinderlehrer, David
    Kowalczyk, Michal
    Laurencot, Philippe
    Lisini, Stefano
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (06): : 1553 - 1576
  • [7] Convergence of the mass-transport steepest descent scheme for the subcritical Patlak-Keller-Segel model
    Blanchet, Adrien
    Calvez, Vincent
    Carrillo, Jose A.
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (02) : 691 - 721
  • [8] Diffusion of multiple species with excluded-volume effects
    Bruna, Maria
    Chapman, S. Jonathan
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (20)
  • [9] SORTING PHENOMENA IN A MATHEMATICAL MODEL FOR TWO MUTUALLY ATTRACTING/REPELLING SPECIES
    Burger, Martin
    Di Francesco, Marco
    Fagioli, Simone
    Stevens, Angela
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) : 3210 - 3250
  • [10] NONLINEAR CROSS-DIFFUSION WITH SIZE EXCLUSION
    Burger, Martin
    Di Francesco, Marco
    Pietschmann, Jan-Frederik
    Schlake, Baebel
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (06) : 2842 - 2871