Properties of a tardigrade desiccation-tolerance protein aerogel

被引:6
|
作者
Eicher, Jonathan [1 ]
Hutcheson, Brent O. [1 ]
Pielak, Gary J. [1 ,2 ,3 ,4 ]
机构
[1] Univ N Carolina, Dept Chem, Chapel Hill, NC 27599 USA
[2] Univ N Carolina, Dept Biochem & Biophys, Chapel Hill, NC 27599 USA
[3] Univ N Carolina, Lineberger Comprehens Canc Ctr, Chapel Hill, NC 27599 USA
[4] Univ N Carolina, Integrat Program Biol & Genome Sci, Chapel Hill, NC 27599 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
STORAGE;
D O I
10.1016/j.bpj.2023.05.002
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Lyophilization is promising for tackling degradation during the drying and storage of protein-based drugs. Tardigrade cytosolically abundant heat soluble (CAHS) proteins are necessary and sufficient for desiccation-tolerance in vivo and protein protection in vitro. Hydrated CAHS proteins form coiled-coil-based fine-stranded, cold-setting hydrogels, but the dried protein remains largely uncharacterized. Here, we show that dried CAHS D gels (i.e., aerogels) retain the structural units of their hydrogels, but the details depend on prelyophilization CAHS concentrations. Low concentration samples (<10 g/L) form thin (<0.2 mm) tangled fibrils lacking regular structure on the micron scale. Upon increasing the concentration, the fibers thicken and form slabs comprising the walls of the aerogel pores. These changes in morphology are associated with a loss in disorder and an increase in large b sheets and a decrease in a helices and random coils. This disorder-to-order transition is also seen in hydrated gels as a function of concentration. These results suggest a mechanism for pore formation and indicate that using CAHS proteins as excipients will require attention to initial conditions because the starting concentration impacts the lyophilized product.
引用
收藏
页码:2500 / 2505
页数:6
相关论文
共 50 条
  • [21] Bryophytes as experimental models for the study of environmental stress tolerance: Tortula ruralis and desiccation-tolerance in mosses
    Melvin J. Oliver
    Jeff Velten
    Andrew J. Wood
    Plant Ecology, 2000, 151 : 73 - 84
  • [22] Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance
    Nguyen, Kenny
    Shraddha, K. C.
    Gonzalez, Tyler
    Tapia, Hugo
    Boothby, Thomas C.
    COMMUNICATIONS BIOLOGY, 2022, 5 (01)
  • [23] Expression of different desiccation-tolerance related genes in various species of entomopathogenic nematodes
    Somvanshi, Vishal S.
    Koltai, Hinanit
    Glazer, Itamar
    MOLECULAR AND BIOCHEMICAL PARASITOLOGY, 2008, 158 (01) : 65 - 71
  • [24] Trehalose and tardigrade CAHS proteins work synergistically to promote desiccation tolerance
    Kenny Nguyen
    Shraddha KC
    Tyler Gonzalez
    Hugo Tapia
    Thomas C. Boothby
    Communications Biology, 5
  • [25] Desiccation-tolerance specific gene expression in leaf tissue of the resurrection plant Sporobolus stapfianus
    Le, Tuan Ngoc
    Blomstedt, Cecilia K.
    Kuang, Jianbo
    Tenlen, Jennifer
    Gaff, Donald F.
    Hamill, John D.
    Neale, Alan D.
    FUNCTIONAL PLANT BIOLOGY, 2007, 34 (07) : 589 - 600
  • [26] Desiccation Tolerance in the Tardigrade Richtersius coronifer Relies on Muscle Mediated Structural Reorganization
    Halberg, Kenneth Agerlin
    Jorgensen, Aslak
    Mobjerg, Nadja
    PLOS ONE, 2013, 8 (12):
  • [27] Tun formation is not a prerequisite for desiccation tolerance in the marine tidal tardigrade Echiniscoides sigismundi
    Hygum, Thomas L.
    Clausen, Lykke K. B.
    Halberg, Kenneth A.
    Jorgensen, Aslak
    Mobjerg, Nadja
    ZOOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, 2016, 178 (04) : 907 - 911
  • [28] Desiccation tolerance of the tardigrade Milnesium tardigradum collected in Sapporo, Japan, and Bogor, Indonesia
    Horikawa, DD
    Higashi, S
    ZOOLOGICAL SCIENCE, 2004, 21 (08) : 813 - 816
  • [29] Protein stability and desiccation tolerance
    Hoekstra, FA
    Wolkers, WF
    Golovina, EA
    IUFRO SEED SYMPOSIUM 1998: RECALCITRANT SEEDS, PROCEEDINGS, 1999, : 188 - 207
  • [30] Protection by desiccation-tolerance proteins probed at the residue level (vol 31, pg 396, 2022)
    Crilly, C. J.
    Brom, J. A.
    Warmuth, O.
    Esterly, H. J.
    Pielak, G. J.
    PROTEIN SCIENCE, 2022, 31 (06)