Existence and uniqueness of radial solution for the elliptic equation system in an annulus

被引:0
作者
Wang, Dan [1 ]
Li, Yongxiang [1 ]
机构
[1] Northwest Normal Univ, Dept Math, Lanzhou 730070, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 09期
关键词
elliptic equation system; gradient term; radial solution; annular domain; Leray-Schauder fixed point theorem; POSITIVE SOLUTIONS; MULTIPLICITY; EXTERIOR;
D O I
10.3934/math.20231118
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article discusses the existence and uniqueness of radial solution for the elliptic equation system ⎪⎪⎪⎪⎪⎧ ⎨⎪⎪ ⎪⎪⎪⎪⎪⎪⎪⎩ - Au = f(|x|, u, v, | backward difference u|), x E sp, - Av = g(|x|, u, v, | backward difference v|), x E sp, u|asp = 0, v|asp = 0, where sp = {x E RN : r1 < |x| < r2}, N & GE; 3, f, g : [r1, r2] x R x R x R+ & RARR; R are continuous. Due to the appearance of the gradient term in the nonlinearity, the equation system has no variational structure and the variational method cannot be applied to it directly. We will give the correlation conditions of f and g, that is, f and g are superlinear or sublinear, and prove the existence and uniqueness of radial solutions by using Leray-Schauder fixed point theorem.
引用
收藏
页码:21929 / 21942
页数:14
相关论文
共 27 条
[1]  
Afrouzi GA, 2011, BULL MATH ANAL APPL, V3, P146
[2]   Existence of solutions for a class of singular elliptic systems with convection term [J].
Alves, Claudianor O. ;
Moussaoui, Abdelkrim .
ASYMPTOTIC ANALYSIS, 2014, 90 (3-4) :237-248
[3]  
Batkam CJ, 2015, AFR MAT, V26, P65, DOI 10.1007/s13370-013-0190-2
[4]   Multiple positive radial solutions for Neumann elliptic systems with gradient dependence [J].
Cianciaruso, Filomena ;
Infante, Gennaro ;
Pietramala, Paolamaria .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (16) :6358-6367
[5]   Semilinear Elliptic Systems with Dependence on the Gradient [J].
Cianciaruso, Filomena ;
Pietramala, Paolamaria .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2018, 15 (04)
[6]   The critical hyperbola for a Hamiltonian elliptic system with weights [J].
de Figueiredo, Djairo G. ;
Peral, Ireneo ;
Rossi, Julio D. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2008, 187 (03) :531-545
[7]   Superlinear systems of second-order ODE's [J].
De Figueiredo, Djairo G. ;
Ubilla, Pedro .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (06) :1765-1773
[8]   Non-variational elliptic systems in dimension two: a priori bounds and existence of positive solutions [J].
de Figueiredo, Djairo G. ;
Joao, Marcos do O. ;
Ruf, Bernhard .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2008, 4 (01) :77-96
[9]  
Deimling K., 2010, Nonlinear Functional Analysis
[10]   Multiplicity of positive radial solutions for an elliptic system on an annulus [J].
Dunninger, DR ;
Wang, HY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (05) :803-811