We need to talk about nonprobability samples

被引:46
作者
Boyd, Robin J. [1 ]
Powney, Gary D. [1 ]
Pescott, Oliver L. [1 ]
机构
[1] UK Ctr Ecol & Hydrol, Benson Lane, Crowmarsh Gifford OX10 8BB, Oxon, England
关键词
INFERENCE; BIAS; DECLINES; MODELS; APPLICABILITY; POPULATIONS; TERRESTRIAL; NONRESPONSE; FRAMEWORKS; PROBAST;
D O I
10.1016/j.tree.2023.01.001
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
In most circumstances, probability sampling is the only way to ensure unbiased inference about population quantities where a complete census is not possible. As we enter the era of 'big data', however, nonprobability samples, whose sampling mechanisms are unknown, are undergoing a renaissance. We explain why the use of nonprobability samples can lead to spurious conclusions, and why seemingly large nonprobability samples can be (effectively) very small. We also review some recent controversies surrounding the use of nonprobability samples in biodiversity monitoring. These points notwithstanding, we argue that nonprobability samples can be useful, provided that their limitations are assessed, mitigated where possible and clearly communicated. Ecologists can learn much from other disciplines on each of these fronts.
引用
收藏
页码:521 / 531
页数:11
相关论文
共 69 条
[1]  
Anderson D., 2008, MODEL BASED INFERENC
[2]  
Audisio P., 2020, ELETTER ARE FRESHWAT
[3]  
Blastand M., 2020, Nature, V587, P81, DOI DOI 10.1007/978-1-4614-4214-1_3
[4]  
Boyd R.J., 2022, ecoevorxiv, DOI DOI 10.32942/OSF.IO/68ATS
[5]   Inferring trends in pollinator distributions across the Neotropics from publicly available data remains challenging despite mobilization efforts [J].
Boyd, Robin J. ;
Aizen, Marcelo A. ;
Barahona-Segovia, Rodrigo M. ;
Flores-Prado, Luis ;
Fonturbel, Francisco E. ;
Francoy, Tiago M. ;
Lopez-Aliste, Manuel ;
Martinez, Lican ;
Morales, Carolina L. ;
Ollerton, Jeff ;
Pescott, Oliver L. ;
Powney, Gary D. ;
Mauro Saraiva, Antonio ;
Schmucki, Reto ;
Zattara, Eduardo E. ;
Carvell, Claire .
DIVERSITY AND DISTRIBUTIONS, 2022, 28 (07) :1404-1415
[6]   ROBITT: A tool for assessing the risk-of-bias in studies of temporal trends in ecology [J].
Boyd, Robin J. ;
Powney, Gary D. ;
Burns, Fiona ;
Danet, Alain ;
Duchenne, Francois ;
Grainger, Matthew J. ;
Jarvis, Susan G. ;
Martin, Gabrielle ;
Nilsen, Erlend B. ;
Porcher, Emmanuelle ;
Stewart, Gavin B. ;
Wilson, Oliver J. ;
Pescott, Oliver L. .
METHODS IN ECOLOGY AND EVOLUTION, 2022, 13 (07) :1497-1507
[7]   Unrepresentative big surveys significantly overestimated US vaccine uptake [J].
Bradley, Valerie C. ;
Kuriwaki, Shiro ;
Isakov, Michael ;
Sejdinovic, Dino ;
Meng, Xiao-Li ;
Flaxman, Seth .
NATURE, 2021, 600 (7890) :695-+
[8]   Using incomplete floristic monitoring data from habitat mapping programmes to detect species trends [J].
Bruelheide, Helge ;
Jansen, Florian ;
Jandt, Ute ;
Bernhardt-Roemermann, Markus ;
Bonn, Aletta ;
Bowler, Diana ;
Dengler, Juergen ;
Eichenberg, David ;
Grescho, Volker ;
Harter, David ;
Jugelt, Matthias ;
Kellner, Simon ;
Ludwig, Martin ;
Wesche, Karsten ;
Luett, Silke .
DIVERSITY AND DISTRIBUTIONS, 2020, 26 (07) :782-794
[9]  
Carey PD., 2008, Countryside Survey: UK Results from 2007: NERC/Centre for Ecology Hydrology
[10]   The misunderstood sixth mass extinction [J].
Ceballos, Gerardo ;
Ehrlich, Paul R. .
SCIENCE, 2018, 360 (6393) :1080-1081