Action of n-derivations and n-multipliers on ideals of (semi)-prime rings

被引:4
作者
Ali, Shakir [1 ]
Alsuraiheed, Turki M. [2 ]
Parveen, Nazia [1 ]
Varshney, Vaishali [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, India
[2] King Saud Univ, Dept Math, Riyadh, Saudi Arabia
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 07期
关键词
semiprime ring; ideal; derivation; symmetric n-derivation; n-multiplier; ADDITIVE MAPS; TRACES; PRIME;
D O I
10.3934/math.2023879
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The present paper aims to investigate the containment of nonzero central ideal in a ring R when the trace of symmetric n-derivations satisfies some differential identities. Lastly, we prove that in a prime ring R of suitable torsion restriction, if D, G : Rn -> R are two nonzero symmetric n-derivations such that f(theta)theta+ theta g(theta) = 0 holds V theta E W, a nonzero left ideal of R where f and g are the traces of D and G, respectively, then either R is commutative or G acts as a left n-multiplier. Finally, we characterize symmetric n-derivations in terms of left n-multipliers.
引用
收藏
页码:17208 / 17228
页数:21
相关论文
共 19 条
  • [1] Ali A, 2015, ITAL J PURE APPL MAT, P123
  • [2] On prime and semiprime rings with derivations
    Argaç, N
    [J]. ALGEBRA COLLOQUIUM, 2006, 13 (03) : 371 - 380
  • [3] Ashraf M, 2014, SOUTHEAST ASIAN BULL, V38, P321
  • [4] Ashraf M., 1999, Rend. Istit. Mat. Univ. Trieste, V31, P25, DOI DOI 10.1007/S13226-022-00279-W
  • [5] Ashraf M., 2015, ALGEBRA ANAL THEORY, P41
  • [6] Ashraf M., 2007, SE ASIAN B MATH, V31, P415
  • [7] TRACES OF PERMUTING GENERALIZED N-DERIVATIONS OF RINGS
    Ashraf, Mohammad
    Khan, Almas
    Jamal, Malik Rashid
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (02) : 731 - 740
  • [8] Traces of Permuting n-Additive Maps and Permuting n-Derivations of Rings
    Ashraf, Mohammad
    Jamal, Malik Rashid
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2014, 11 (02) : 287 - 297
  • [9] CENTRALIZING MAPPINGS AND DERIVATIONS IN PRIME-RINGS
    BRESAR, M
    [J]. JOURNAL OF ALGEBRA, 1993, 156 (02) : 385 - 394
  • [10] Daif M. N., 1992, INT J MATH MATH SCI, V15, P205, DOI [10.1155/S0161171292000255, DOI 10.1155/S0161171292000255]