The Formation Mechanism of (001) Facet Dominated α-FAPbI3 Film by Pseudohalide Ions for High-Performance Perovskite Solar Cells

被引:0
作者
Li, Shengwen [1 ]
Xia, Junmin [1 ]
Wen, Zhaorui [1 ]
Gu, Hao [1 ]
Guo, Jia [1 ]
Liang, Chao [1 ]
Pan, Hui [1 ]
Wang, Xingzhu [2 ]
Chen, Shi [1 ]
机构
[1] Univ Macau, Inst Appl Phys & Mat Engn, Macau 999078, Peoples R China
[2] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 418055, Guangdong, Peoples R China
关键词
(001) facet; binding energy; DFT calculation; perovskite solar cell; pseudohalide anions; EFFICIENT; PHASE; ELECTRON;
D O I
10.1002/advs.202300056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Formamidinium lead triiodide (alpha-FAPbI(3)) has been widely used in high-efficiency perovskite solar cells due to its small band gap and excellent charge-transport properties. Recently, some additives show facet selectivity to generate a (001) facet-dominant film during crystallization. However, the mechanism to realize such (001) facet selectivity is not fully understood. Here, the authors attempted to use three ammonia salts NH4X (X are pseudohalide anions) to achieve better (001) facet selectivity in perovskite crystallization and improved crystallinity. After addition, the (001) facet dominance is generally increased with the best effect from SCN- anions. The theoretical calculation revealed three mechanisms of such improvements. First, pseudohalide anions have larger binding energy than the iodine ion to bind the facets including (110), (210), and (111), slowing down the growth of these facets. The large binding energy also reduces nucleation density and improves crystallinity. Second, pseudohalide ions improve phase purity by increasing the formation energies of the delta-phase and other hexagonal polytypes, retarding the alpha- to delta-phase transition. Third, the strong binding of these anions can also effectively passivate the iodine vacancies and suppress nonradiative recombination. As a result, the devices show a power conversion efficiency of 24.11% with a V-oc of 1.181 V.
引用
收藏
页数:9
相关论文
共 50 条
[31]   Simulation and Optimization of FAPbI3 Perovskite Solar Cells with a BaTiO3 Layer for Efficiency Enhancement [J].
Stanic, Denis ;
Kojic, Vedran ;
Bohac, Mario ;
Cizmar, Tihana ;
Juraic, Krunoslav ;
Rath, Thomas ;
Gajovic, Andreja .
MATERIALS, 2022, 15 (20)
[32]   Formamidine formate as the multifunctional modulator at buried interface for efficient FAPbI3 perovskite solar cells [J].
Wang, Ya ;
Zhou, Bo ;
Han, Meidouxue ;
Zhao, Juntao ;
Wang, Rongbo ;
Zhang, Jiawei ;
Ren, Huizhi ;
Hou, Guofu ;
Ding, Yi ;
Zhao, Ying ;
Zhang, Xiaodan .
NANO ENERGY, 2023, 118
[33]   Electrodeposition of lead dioxide induces the fabrication of perovskite FAPbI3 film and electron-transport-layer-free solar cells [J].
Li, Qiang ;
Lu, Congrong ;
Li, Chunhe ;
Ren, Kuankuan ;
Yao, Bo ;
Xu, Haitao ;
Liu, Shiyan ;
Tan, Yongsheng ;
Dou, Weidong ;
Fang, Zebo .
SOLAR ENERGY, 2022, 233 :515-522
[34]   Radical Molecular Network-Buffer Minimizes Photovoltage Loss in FAPbI3 Perovskite Solar Cells [J].
Li, Mubai ;
Jiang, Yang ;
Chen, Shaoyu ;
Shi, Zhangsheng ;
He, Qingyun ;
Wang, Junbo ;
Wu, Mengyang ;
Zhong, Chongyu ;
Zhao, Xiangru ;
Yang, Pinghui ;
Lin, Zhizhong ;
Lai, Jingya ;
Li, Renzhi ;
Dong, Jingjin ;
Wang, Aifei ;
Rothmann, Mathias Uller ;
Cheng, Yi-Bing ;
Huang, Wei ;
Qin, Tianshi ;
Li, Wei ;
Wang, Fangfang .
ADVANCED MATERIALS, 2025,
[35]   Multifunctional Phosphonic Acid-Based Passivation: A Pathway to Enhance Efficiency and High-Temperature Durability in FAPbI3 Perovskite Solar Cells [J].
Mathew, Siby ;
Nishimura, Naoyuki ;
Kogo, Atsushi ;
Itoh, Tetsuji ;
Yamamoto, Kohei ;
Hinuma, Yoyo ;
Murakami, Takurou N. .
ACS APPLIED ENERGY MATERIALS, 2025,
[36]   CO2 Laser Crystallization in Ambient for Highly Efficient FAPbI3 Perovskite Solar Cells [J].
Yi, Jianpeng ;
Leung, Tik-Lun ;
Digweed, Justin ;
Bing, Jueming ;
Bailey, Christopher ;
Liao, Chwenhaw ;
Tao, Runmin ;
Wang, Guoliang ;
Li, Zhuofeng ;
Nguyen, Hieu T. ;
McCamey, Dane R. ;
Zheng, Jianghui ;
Mahmud, Md Arafat ;
Ho-Baillie, Anita W. Y. .
SMALL, 2024, 20 (45)
[37]   Amidinium additives for high-performance perovskite solar cells [J].
Ma, Yue ;
Liu, Na ;
Zai, Huachao ;
Fan, Rundong ;
Kang, Jiaqian ;
Yang, Xiaoyan ;
Pei, Fengtao ;
Zhou, Wentao ;
Wang, Hao ;
Chen, Yihua ;
Wang, Lina ;
Hong, Jiawang ;
Bai, Yang ;
Zhou, Huanping ;
Chen, Qi .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (07) :3506-3512
[38]   Pseudohalide (SCN-)-doped CsPbI3 for high-performance solar cells [J].
Yao, Zhun ;
Jin, Zhiwen ;
Zhang, Xiaorong ;
Wang, Qian ;
Zhang, Hong ;
Xu, Zhuo ;
Ding, Liming ;
Liu, Shengzhong .
JOURNAL OF MATERIALS CHEMISTRY C, 2019, 7 (44) :13736-13742
[39]   High-Quality Additive-Free α-FAPbI3 Film Fabricated by Alkane/Nanocrystals Method and Surface Chemistry Modulation for Efficient Perovskite Solar Cell [J].
Wang, Jiafeng ;
Xiu, Jinwei ;
Zheng, Guanhaojie ;
He, Dong ;
Gao, Han ;
Chen, Zhenhua ;
Li, Zhaoning ;
Chen, Guocong ;
Zhang, Xusheng ;
Ma, Guoqiang ;
Slater, Peter Raymond ;
He, Zhubing .
ADVANCED FUNCTIONAL MATERIALS, 2024,
[40]   Irreversible phase back conversion of α-FAPbI3 driven by lithium-ion migration in perovskite solar cells [J].
Choi, Seung-Gu ;
Lee, Jin-Wook .
ECOMAT, 2023, 5 (10)