Computational and experimental studies of wave-structure interaction: Wave attenuation by a floating breakwater

被引:9
作者
Peng, N. N. [1 ]
Lau, W. K. [1 ]
Wai, O. W. H. [2 ]
Chow, K. W. [1 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Pokfulam, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Hung Hom, Hong Kong, Peoples R China
关键词
LARGE-EDDY SIMULATION; NUMERICAL-SIMULATION; WATER-WAVES; VOLUME; MODEL; SCALE; FLOW;
D O I
10.1063/5.0142991
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Interactions between surface gravity waves and a floating rigid body are complex, as waves may reflect from, break on, and be transmitted behind the body. Studies of these phenomena are critically important in improving the safety and functional efficiency of offshore structures. Here, the wave attenuation performance and motions of a type of floating breakwater (FB) are studied through numerical and experimental approaches. A numerical wave tank (NWT) is developed based on the software OpenFOAM and properties of wave channel from a laboratory. In the NWT, the air-water interface is captured by the volume of fluid method. The motions of FB are tracked by the six degrees of freedom model. A mooring system model is developed to simulate the constraints of the FB. Large eddy simulation turbulence modeling is implemented for the wave breaking processes. A model FB with a scale of 1:20 is tested in both the experimental and numerical wave channel. Wave heights at the back/front of the FB and the constraint forces of the mooring wires are measured. The numerical models are validated by comparing the results with experimental measurements. The variations of transmission/reflection coefficients, energy dissipation rate, and maximum mooring force are calculated. Changes of the response amplitude operators with the ratio of FB width to wavelength ( B / L w) and wave steepness are analyzed. The wave transmission coefficient will drop below 0.8 if the value of B / L w is larger than 0.3, but will go over 0.95 if B / L w is less than 0.1. Wave steepness has a large influence on FB motions and the mooring system. The effect of Stokes drift is observed by the shift of position of the FB.
引用
收藏
页数:19
相关论文
共 68 条
[41]   Large eddy simulation of free-surface flows [J].
McSherry, Richard J. ;
Chua, Ken V. ;
Stoesser, Thorsten .
JOURNAL OF HYDRODYNAMICS, 2017, 29 (01) :1-12
[42]  
Mei C.C., 2005, THEORY APPL OCEAN SU
[43]  
OpenFOAM Foundation, 2020, INT CAPT OPENFOAM
[44]  
OpenFOAM Foundation, 2021, OPENFOAM V9 US GUID
[45]   FRONTS PROPAGATING WITH CURVATURE-DEPENDENT SPEED - ALGORITHMS BASED ON HAMILTON-JACOBI FORMULATIONS [J].
OSHER, S ;
SETHIAN, JA .
JOURNAL OF COMPUTATIONAL PHYSICS, 1988, 79 (01) :12-49
[46]   Experimental study on wave transmission coefficient, mooring lines and module connector forces with different designs of floating breakwaters [J].
Pena, E. ;
Ferreras, J. ;
Sanchez-Tembleque, F. .
OCEAN ENGINEERING, 2011, 38 (10) :1150-1160
[47]   A numerical wave tank with large eddy simulation for wave breaking [J].
Peng, N. N. ;
Chow, K. W. .
OCEAN ENGINEERING, 2022, 266
[48]   Numerical simulation of interactions between water waves and inclined-moored submerged floating breakwaters [J].
Peng, Wei ;
Lee, Kwang-Ho ;
Shin, Seung-Ho ;
Mizutani, Norimi .
COASTAL ENGINEERING, 2013, 82 :76-87
[49]   Optimizing wave generation and wave damping in 3D-flow simulations with implicit relaxation zones [J].
Peric, Robinson ;
Vukcevic, Vuko ;
Abdel-Maksoud, Moustafa ;
Jasak, Hrvoje .
COASTAL ENGINEERING, 2022, 171
[50]   Capillary effects on surface waves [J].
Perlin, M ;
Schultz, WW .
ANNUAL REVIEW OF FLUID MECHANICS, 2000, 32 :241-+