Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture

被引:34
|
作者
Liu, Hang [1 ,2 ,4 ]
Cui, Shaowei [1 ,2 ,4 ]
Zhao, Xiaohui [3 ]
Cong, Fengyu [1 ,2 ,4 ]
机构
[1] Dalian Univ Technol, Fac Med, Sch Biomed Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Liaoning Key Lab Integrated Circuit & Biomed Elect, Dalian, Peoples R China
[3] Dalian Municipal Cent Hosp, Dept Resp & Crit Care Med, Dalian, Peoples R China
[4] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
关键词
Obstructive sleep apnea; ECG; Transformer; Deep learning; AUTOMATIC DETECTION; ALGORITHM;
D O I
10.1016/j.bspc.2023.104581
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Obstructive sleep apnea (OSA) is a sleep breathing disorder that can seriously affect the health of patients. The manual diagnostic of OSA through the Polysomnography (PSG) recordings is time-consuming and tedious. Electrocardiogram (ECG) signals have been an alternative for OSA detection. This paper proposes a CNN -Transformer architecture for automatic OSA detection based on single-channel ECG signals. The proposed architecture has two fundamental parts. The first part has the aim of learning a feature representation from ECG signals by using the CNN. The second part consists mainly of the Transformer, a model structure built solely with self-attention mechanism, which is used to model the global temporal context and to perform classification tasks. The effectiveness of the proposed method was validated on Apnea-ECG dataset. The dataset consists of 70 ECG recordings with an annotation for each minute of each recording. The current and adjacent 1-min epochs were combined to form the 3-min input epoch. Besides, experiments were set up with different baseline deep learning models for sequence modeling to verify their effects on classification performance. The per -segment classification accuracy reached 88.2% and the area under the receiver operating characteristic curve (AUC) was 0.95. The per-recording classification accuracy reached 100% and the mean absolute error (MAE) was 4.33. Experimental results demonstrate that the Transformer structure and a 3-min input time window both effectively improve the classification performance. The proposed method can accurately detect OSA from single-channel ECG signals and provides a promising and reliable solution for home portable detection of OSA.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Detection of sleep apnea using deep neural networks and single-lead ECG signals
    Zarei, Asghar
    Beheshti, Hossein
    Asl, Babak Mohammadzadeh
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71
  • [32] Obstructive Sleep Apnea Detection Using Combination of CNN and LSTM Techniques
    Liang, Xiaolong
    Qiao, Xing
    Li, Yongtao
    PROCEEDINGS OF 2019 IEEE 8TH JOINT INTERNATIONAL INFORMATION TECHNOLOGY AND ARTIFICIAL INTELLIGENCE CONFERENCE (ITAIC 2019), 2019, : 1733 - 1736
  • [33] A New Technology for Extracting Fetal ECG Signals from Single-channel Maternal Abdominal ECG Signals
    Wang W.
    Qian L.
    Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2021, 48 (10): : 121 - 130
  • [34] Sleep Classification using CNN and RNN on Raw EEG Single-Channel
    Mishra, Satyam
    Birok, Rajesh
    2020 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2020), 2020, : 232 - 237
  • [35] Sleep apnea detection from ECG signal using deep CNN-based structures
    Ayatollahi, Ahmad
    Afrakhteh, Sajjad
    Soltani, Fatemeh
    Saleh, Ehsan
    EVOLVING SYSTEMS, 2023, 14 (02) : 191 - 206
  • [36] Sleep apnea detection from ECG signal using deep CNN-based structures
    Ahmad Ayatollahi
    Sajjad Afrakhteh
    Fatemeh Soltani
    Ehsan Saleh
    Evolving Systems, 2023, 14 : 191 - 206
  • [37] Classifier Precision Analysis for Sleep Apnea Detection Using ECG Signals
    Pombo, Nuno
    Silva, Bruno M. C.
    Pinho, Andre Miguel
    Garcia, Nuno
    IEEE ACCESS, 2020, 8 : 200477 - 200485
  • [38] Sleep-wake stage detection with single channel ECG and hybrid machine learning model in patients with obstructive sleep apnea
    Bozkurt, Ferda
    Ucar, Muhammed Kursad
    Bilgin, Cahit
    Zengin, Ahmet
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2021, 44 (01) : 63 - 77
  • [39] Sleep Apnea Detection from Single-Lead ECG Using Features Based on ECG-Derived Respiration (EDR) Signals
    Janbakhshi, P.
    Shamsollahi, M. B.
    IRBM, 2018, 39 (03) : 206 - 218
  • [40] Diagnosis of Obstructive Sleep Apnea from ECG Signals Using Machine Learning and Deep Learning Classifiers
    Sheta, Alaa
    Turabieh, Hamza
    Thaher, Thaer
    Too, Jingwei
    Mafarja, Majdi
    Hossain, Md Shafaeat
    Surani, Salim R.
    APPLIED SCIENCES-BASEL, 2021, 11 (14):