Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture

被引:34
|
作者
Liu, Hang [1 ,2 ,4 ]
Cui, Shaowei [1 ,2 ,4 ]
Zhao, Xiaohui [3 ]
Cong, Fengyu [1 ,2 ,4 ]
机构
[1] Dalian Univ Technol, Fac Med, Sch Biomed Engn, Dalian, Peoples R China
[2] Dalian Univ Technol, Liaoning Key Lab Integrated Circuit & Biomed Elect, Dalian, Peoples R China
[3] Dalian Municipal Cent Hosp, Dept Resp & Crit Care Med, Dalian, Peoples R China
[4] Univ Jyvaskyla, Fac Informat Technol, Jyvaskyla, Finland
关键词
Obstructive sleep apnea; ECG; Transformer; Deep learning; AUTOMATIC DETECTION; ALGORITHM;
D O I
10.1016/j.bspc.2023.104581
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Obstructive sleep apnea (OSA) is a sleep breathing disorder that can seriously affect the health of patients. The manual diagnostic of OSA through the Polysomnography (PSG) recordings is time-consuming and tedious. Electrocardiogram (ECG) signals have been an alternative for OSA detection. This paper proposes a CNN -Transformer architecture for automatic OSA detection based on single-channel ECG signals. The proposed architecture has two fundamental parts. The first part has the aim of learning a feature representation from ECG signals by using the CNN. The second part consists mainly of the Transformer, a model structure built solely with self-attention mechanism, which is used to model the global temporal context and to perform classification tasks. The effectiveness of the proposed method was validated on Apnea-ECG dataset. The dataset consists of 70 ECG recordings with an annotation for each minute of each recording. The current and adjacent 1-min epochs were combined to form the 3-min input epoch. Besides, experiments were set up with different baseline deep learning models for sequence modeling to verify their effects on classification performance. The per -segment classification accuracy reached 88.2% and the area under the receiver operating characteristic curve (AUC) was 0.95. The per-recording classification accuracy reached 100% and the mean absolute error (MAE) was 4.33. Experimental results demonstrate that the Transformer structure and a 3-min input time window both effectively improve the classification performance. The proposed method can accurately detect OSA from single-channel ECG signals and provides a promising and reliable solution for home portable detection of OSA.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Wavelet transform and deep learning-based obstructive sleep apnea detection from single-lead ECG signals
    Yuxing Lin
    Hongyi Zhang
    Wanqing Wu
    Xingen Gao
    Fei Chao
    Juqiang Lin
    Physical and Engineering Sciences in Medicine, 2024, 47 : 119 - 133
  • [22] Strength of ensemble learning in automatic sleep stages classification using single-channel EEG and ECG signals
    Rashidi, Samandokht
    Asl, Babak Mohammadzadeh
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2024, 62 (04) : 997 - 1015
  • [23] Strength of ensemble learning in automatic sleep stages classification using single-channel EEG and ECG signals
    Samandokht Rashidi
    Babak Mohammadzadeh Asl
    Medical & Biological Engineering & Computing, 2024, 62 : 997 - 1015
  • [24] Wavelet transform and deep learning-based obstructive sleep apnea detection from single-lead ECG signals
    Lin, Yuxing
    Zhang, Hongyi
    Wu, Wanqing
    Gao, Xingen
    Chao, Fei
    Lin, Juqiang
    PHYSICAL AND ENGINEERING SCIENCES IN MEDICINE, 2024, 47 (01) : 119 - 133
  • [25] A multi-scale parallel convolutional neural network for automatic sleep apnea detection using single-channel EEG signals
    Jiang, Dihong
    Ma, Yu
    Wang, Yuanyuan
    2018 11TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2018), 2018,
  • [26] A Hybrid Transformer Model for Obstructive Sleep Apnea Detection Based on Self-Attention Mechanism Using Single-Lead ECG
    Hu, Shuaicong
    Cai, Wenjie
    Gao, Tijie
    Wang, Mingjie
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [27] DEEP LEARNING-BASED SLEEP APNEA DETECTION USING SINGLE-LEAD ECG SIGNALS FROM THE PHYSIONET APNEA-ECG DATABASE
    Wicaksono, Pandu
    Yunanda, Rezki
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,
  • [28] DEEP LEARNING-BASED SLEEP APNEA DETECTION USING SINGLE-LEAD ECG SIGNALS FROM THE PHYSIONET APNEA-ECG DATABASE
    Wicaksono, Pandu
    Yunanda, Rezki
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,
  • [29] Automatic Detection of Obstructive Sleep Apnea Using Speech Signals
    Goldshtein, Evgenia
    Tarasiuk, Ariel
    Zigel, Yaniv
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2011, 58 (05) : 1373 - 1382
  • [30] OBSTRUCTIVE SLEEP APNEA DETECTION USING ECG MORPHOLOGY AND MACHINE LEARNING
    Sayeed, Fahad
    Brooks, Justin
    Banerjee, Nilanjan
    SLEEP, 2023, 46