A limit Kalman filter and smoother for systems with unknown inputs

被引:4
作者
Gakis, Grigorios [1 ]
Smith, Malcolm C. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge, England
[2] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
关键词
Kalman filter and smoother; unknown input; stability; road profile estimation; RICCATI DIFFERENCE EQUATION; MINIMUM-VARIANCE INPUT; STATE ESTIMATION; LINEAR-SYSTEMS; OBSERVERS; OPTIMALITY; DESIGN;
D O I
10.1080/00207179.2022.2157752
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper derives the limit of the Kalman filter and smoother as the inverse of the process noise covariance tends to zero (the zero informational limit) in the case that there is direct feedthrough (of full column rank) of the process noise input to the measurements. Two forms of the filter in the limit are derived with the second being a standard Kalman filter without unknown inputs. The latter form is used to derive necessary and sufficient conditions for convergence and stability of the filter. These consist of a controllability condition and a minimum phase condition. The filter and smoother are applied to an automotive example to estimate an unknown road profile. The example illustrates the usefulness of the stability and convergence conditions to inform the choice of a suitable set of sensors.
引用
收藏
页码:532 / 542
页数:11
相关论文
共 40 条
  • [1] Simultaneous input & state estimation, singular filtering and stability
    Abooshahab, Mohammad Ali
    Alyaseen, Mohammed M. J.
    Bitmead, Robert R.
    Hovd, Morten
    [J]. AUTOMATICA, 2022, 137
  • [2] Anderson B. D. O., 1979, OPTIMAL FILTERING
  • [3] [Anonymous], 1996, Robust and Optimal Control
  • [4] Basile G., 1969, Journal of Optimization Theory and Applications, V3, P410, DOI 10.1007/BF00929356
  • [5] A Kalman-filtering derivation of simultaneous input and state estimation
    Bitmead, Robert R.
    Hovd, Morten
    Abooshahab, Mohammad Ali
    [J]. AUTOMATICA, 2019, 108
  • [6] MONOTONICITY AND STABILIZABILITY PROPERTIES OF SOLUTIONS OF THE RICCATI DIFFERENCE EQUATION - PROPOSITIONS, LEMMAS, THEOREMS, FALLACIOUS CONJECTURES AND COUNTEREXAMPLES
    BITMEAD, RR
    GEVERS, MR
    PETERSEN, IR
    KAYE, RJ
    [J]. SYSTEMS & CONTROL LETTERS, 1985, 5 (05) : 309 - 315
  • [7] The deterministic interpretation of the Kalman filter*
    Buchstaller, Dominic
    Liu, Jing
    French, Mark
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2021, 94 (11) : 3226 - 3236
  • [8] CHAN SW, 1984, IEEE T AUTOMAT CONTR, V29, P110, DOI 10.1109/TAC.1984.1103465
  • [9] Unbiased minimum-variance state estimation for linear systems with unknown input
    Cheng, Yue
    Ye, Hao
    Wang, Yongqiang
    Zhou, Donghual
    [J]. AUTOMATICA, 2009, 45 (02) : 485 - 491
  • [10] Unbiased minimum variance estimation for systems with unknown exogenous inputs
    Darouach, M
    Zasadzinski, M
    [J]. AUTOMATICA, 1997, 33 (04) : 717 - 719