An improved belief Hellinger divergence for Dempster-Shafer theory and its application in multi-source information fusion

被引:10
|
作者
Hua, Zhen [1 ]
Jing, Xiaochuan [1 ]
机构
[1] China Acad Aerosp Syst Sci & Engn, Beijing 100035, Peoples R China
关键词
Dempster-Shafer theory; Divergence measure; Multi-source information fusion; Belief function; DECISION-MAKING; COMBINATION; FRAMEWORK; EVIDENCES; DISTANCE;
D O I
10.1007/s10489-022-04428-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dempster-Shafer theory (DST), as a generalization of Bayesian probability theory, is a useful technique for achieving multi-source information fusion under uncertain environments. Nevertheless, when a high degree of conflict exists between pieces of evidence, unreasonable results are often generated using Dempster's combination rule. How to fuse highly conflicting information is still an open problem. In this study, we first propose an improved belief Hellinger divergence measure, which can fully consider the uncertainty in basic probability assignments, to quantify the conflict level between evidence. Second, some properties (i.e., nonnegativity, nondegeneracy, symmetry, and trigonometric inequality) of the proposed divergence measure are discussed. Then, we present a novel multi-source information fusion strategy, in which the credibility of the evidence is determined based on external discrepancy and internal ambiguity. Additionally, we consider the decay of credibility when fusing evidence across different times. Finally, applications in fault diagnosis and Iris dataset classification are presented to demonstrate the effectiveness of our method. The results indicate that our approach is more reasonable and can identify the target with a higher belief degree.
引用
收藏
页码:17965 / 17984
页数:20
相关论文
共 50 条
  • [1] An improved belief Hellinger divergence for Dempster-Shafer theory and its application in multi-source information fusion
    Zhen Hua
    Xiaochuan Jing
    Applied Intelligence, 2023, 53 : 17965 - 17984
  • [2] A new belief divergence measure for Dempster-Shafer theory based on belief and plausibility function and its application in multi-source data fusion
    Wang, Hongfei
    Deng, Xinyang
    Jiang, Wen
    Geng, Jie
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2021, 97 (97)
  • [3] A belief logarithmic similarity measure based on Dempster-Shafer theory and its application in multi-source data fusion
    Huang, Haojian
    Liu, Zhe
    Han, Xue
    Yang, Xiangli
    Liu, Lusi
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (03) : 4935 - 4947
  • [4] An improved belief χ2 divergence for Dempster-Shafer theory and its applications in pattern recognition
    Gao, Xueyuan
    Xiao, Fuyuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (06):
  • [5] A multi-source information fusion approach in tunnel collapse risk analysis based on improved Dempster-Shafer evidence theory
    Wu, Bo
    Qiu, Weixing
    Huang, Wei
    Meng, Guowang
    Huang, Jingsong
    Xu, Shixiang
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [6] Real-time driver drowsiness estimation by multi-source information fusion with Dempster-Shafer theory
    Li, Xuanpeng
    Seignez, Emmanuel
    Lambert, Alain
    Loonis, Pierre
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2014, 36 (07) : 906 - 915
  • [7] Inconsistency elimination of multi-source information fusion in smart home using the Dempster-Shafer evidence theory
    Li, Shijie
    Xu, Hongji
    Xu, Jie
    Li, Xiaoman
    Wang, Yang
    Zeng, Jiaqi
    Li, Jianjun
    Li, Xinya
    Li, Yiran
    Ai, Wentao
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (04)
  • [8] Information fusion for large-scale multi-source data based on the Dempster-Shafer evidence theory
    Zhang, Qinli
    Zhang, Pengfei
    Li, Tianrui
    INFORMATION FUSION, 2025, 115
  • [9] A Multi-Source Data Fusion Method for Assessing the Tunnel Collapse Risk Based on the Improved Dempster-Shafer Theory
    Wu, Bo
    Zeng, Jiajia
    Zhu, Ruonan
    Zheng, Weiqiang
    Liu, Cong
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [10] A novel multi-source information fusion method for emergency spatial resilience assessment based on Dempster-Shafer theory
    Fei, Liguo
    Li, Tao
    Liu, Xiaoyu
    Ding, Weiping
    INFORMATION SCIENCES, 2025, 686