Early prediction of cardiovascular disease using machine learning: Unveiling risk factors from health records

被引:1
作者
Deepa, Dr. R. [1 ]
Sadu, Vijaya Bhaskar [2 ]
Prashant, G. C. [3 ]
Sivasamy, A. [4 ]
机构
[1] Nehru Inst Engn & Technol, ECE, Coimbatore 641105, Tamil Nadu, India
[2] Jawaharlal Nehru Technol Univ, Dept Mech Engn, Kakinada, Andhra Pradesh, India
[3] Texas Tech Univ, Dept Comp Sci, Lubbock, TX 79409 USA
[4] Nehru Inst Technol, Agr Engn, Coimbatore, Tamil Nadu, India
关键词
ARTIFICIAL-INTELLIGENCE; BIG DATA; CLASSIFICATION; VALIDATION; ALGORITHM; FUTURE; CANCER; CARE; AI;
D O I
10.1063/5.0191990
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This article focuses on the early prediction of cardiovascular disease (CVD) through the application of machine learning to health records. This study systematically reviews existing literature and employs advanced machine learning algorithms to discern predictive factors within electronic health data. Key findings highlight the significance of genetic predispositions, lifestyle choices, and clinical markers as influential contributors to CVD development. The integration of these factors into machine learning models demonstrates notable accuracy in preemptive risk assessment. The implications of this research are profound, offering potential advancements in preventive healthcare strategies, personalized interventions, and resource allocation for populations at heightened cardiovascular risk.
引用
收藏
页数:20
相关论文
共 40 条
  • [1] Arora A., 2018, Artif. Intell. Med, V90, P1, DOI [10.1016/j.artmed.2018.09.001, DOI 10.1016/J.ARTMED.2018.09.001]
  • [2] An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction
    Attia, Zachi, I
    Noseworthy, Peter A.
    Lopez-Jimenez, Francisco
    Asirvatham, Samuel J.
    Deshmukh, Abhishek J.
    Gersh, Bernard J.
    Carter, Rickey E.
    Yao, Xiaoxi
    Rabinstein, Alejandro A.
    Erickson, Brad J.
    Kapa, Suraj
    Friedman, Paul A.
    [J]. LANCET, 2019, 394 (10201) : 861 - 867
  • [3] Big Data and Machine Learning in Health Care
    Beam, Andrew L.
    Kohane, Isaac S.
    [J]. JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2018, 319 (13): : 1317 - 1318
  • [4] Briston D. A., 2018, J. Am. Coll. Cardiol, V71, pA2527, DOI [10.1016/S0735-1097(18)32637-5, DOI 10.1016/S0735-1097(18)32637-5]
  • [5] Using recurrent neural network models for early detection of heart failure onset
    Choi, Edward
    Schuetz, Andy
    Stewart, Walter F.
    Sun, Jimeng
    [J]. JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (02) : 361 - 370
  • [6] General cardiovascular risk profile for use in primary care - The Framingham Heart Study
    D'Agostino, Ralph B.
    Vasan, Ramachandran S.
    Pencina, Michael J.
    Wolf, Philip A.
    Cobain, Mark
    Massaro, Joseph M.
    Kannel, William B.
    [J]. CIRCULATION, 2008, 117 (06) : 743 - 753
  • [7] Healthcare's new Frontier: AI-driven early cancer detection for improved well-being
    Deepa, R.
    Arunkumar, S.
    Jayaraj, V.
    Sivasamy, A.
    [J]. AIP ADVANCES, 2023, 13 (11)
  • [8] Advancements in early detection of diabetes and diabetic retinopathy screening using artificial intelligence
    Deepa, R.
    Sivasamy, A.
    [J]. AIP ADVANCES, 2023, 13 (11)
  • [9] Machine Learning in Medicine
    Deo, Rahul C.
    [J]. CIRCULATION, 2015, 132 (20) : 1920 - 1930
  • [10] Artificial Intelligence in Cardiovascular Imaging JACC State-of-the-Art Review
    Dey, Damini
    Slomka, Piotr J.
    Leeson, Paul
    Comaniciu, Dorin
    Shrestha, Sirish
    Sengupta, Partho P.
    Marwick, Thomas H.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (11) : 1317 - 1335