3D Bioprinting and Microfluidic-Based Devices for Cancer Detection and Drug Treatment: Focus on Prostate Cancer

被引:1
作者
Sibbitts, Jay [1 ,2 ]
Di Pietro, Lucia [3 ,4 ]
Privitera, Anna [3 ,5 ]
Cardaci, Vincenzo [6 ]
Maugeri, Salvatore [3 ]
Camarda, Massimo [7 ]
Caruso, Giuseppe [3 ,8 ]
机构
[1] Univ Kansas, Ralph N Adams Inst Bioanalyt Chem, Lawrence, KS USA
[2] Univ Kansas, Dept Chem, Lawrence, KS USA
[3] Univ Catania, Dept Drug & Hlth Sci, Catania, Italy
[4] Univ Catania, Scuola Super Catania, Catania, Italy
[5] Univ Catania, Dept Biomed & Biotechnol Sci, Catania, Italy
[6] Univ Vita Salute San Raffaele, Milan, Italy
[7] STLab Srl, Catania, Italy
[8] IRCCS, Oasi Res Inst, Unit Neuropharmacol & Translat Neurosci, Troina, Italy
关键词
Prostate cancer; microfluidics; 3D bioprinting; cancer treatment; antigen detection; circulating tumor cells; in vitro models; MICROCHIP ELECTROPHORESIS; MEMBRANE ANTIGEN; TOTAL PSA; CELLS; CHIP; PLATFORM; MODEL; IMMUNOASSAYS; STATISTICS; PERCENTAGE;
D O I
10.2174/0109298673298382240307040239
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The burden of increasing cancer incidence among the population, and, in particular, of prostate cancer in men living in highly developed countries, brings with it, on one hand, the need for new devices that allow a faster and earlier diagnosis, ideally in a non-invasive way and with low consumption of expensive reagents, and on the other the need for the assessment of new in vitro models that allow a more reliable assessment of cancer features, including its microenvironment and sensibility to different drugs. At the crossroads of these features, microfluidic devices are found. These, taking advantage of the chemical-physical properties of cells and human samples, have demonstrated great sensitivity and sensibility at an on-chip scale. Many fields of biomedical sciences have tried to exploit all their potentialities: from the detection of antigens in the early phases of the disease (when they are very low concentrated, but the treatment is more effective) to isolation and characterization of circulating tumor cells. However, is in the building of in vitro 3D models to better assess and comprehend the fundamental dynamics occurring in the tumor microenvironment and metastasis that 3D bioprinting techniques come into play. The aim of the present review is to describe the potential of these two different cutting-edge technologies for the detection and treatment of prostate cancer, in the perspective of a possible future combination of them that allows scientists to fill the gaps present in the field to improve patient care and treatment.
引用
收藏
页数:19
相关论文
共 131 条
[81]   Electrochemical Detection of Tumor-Derived Extracellular Vesicles on Nanointerdigitated Electrodes [J].
Mathew, Dilu G. ;
Beekman, Pepijn ;
Lemay, Serge G. ;
Zuilhof, Han ;
Le Gac, Severine ;
van der Wiel, Wilfred G. .
NANO LETTERS, 2020, 20 (02) :820-828
[82]   Current use of PSMA - PET in prostate cancer management [J].
Maurer, Tobias ;
Eiber, Matthias ;
Schwaiger, Markus ;
Gschwend, Juergen E. .
NATURE REVIEWS UROLOGY, 2016, 13 (04) :226-235
[83]   PET Imaging in Prostate Cancer: Focus on Prostate-Specific Membrane Antigen [J].
Mease, Ronnie C. ;
Foss, Catherine A. ;
Pomper, Martin G. .
CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2013, 13 (08) :951-962
[84]   Microfluidic-Based Multiplex qRT-PCR Identifies Diagnostic and Prognostic microRNA Signatures in the Sera of Prostate Cancer Patients [J].
Moltzahn, Felix ;
Olshen, Adam B. ;
Baehner, Lauren ;
Peek, Andrew ;
Fong, Lawrence ;
Stoeppler, Hubert ;
Simko, Jeffry ;
Hilton, Joan F. ;
Carroll, Peter ;
Blelloch, Robert .
CANCER RESEARCH, 2011, 71 (02) :550-560
[85]   EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent [J].
Mottet, Nicolas ;
Bellmunt, Joaquim ;
Bolla, Michel ;
Briers, Erik ;
Cumberbatch, Marcus G. ;
De Santis, Maria ;
Fossati, Nicola ;
Gross, Tobias ;
Henry, Ann M. ;
Joniau, Steven ;
Lam, Thomas B. ;
Mason, Malcolm D. ;
Matveev, Vsevolod B. ;
Moldovan, Paul C. ;
van den Bergh, Roderick C. N. ;
Van den Broeck, Thomas ;
van der Poel, Henk G. ;
van der Kwast, Theo H. ;
Rouviere, Olivier ;
Schoots, Ivo G. ;
Wiegel, Thomas ;
Cornford, Philip .
EUROPEAN UROLOGY, 2017, 71 (04) :618-629
[86]   Drug screening of biopsy-derived spheroids using a self-generated microfluidic concentration gradient [J].
Mulholland, Theresa ;
McAllister, Milly ;
Patek, Samantha ;
Flint, David ;
Underwood, Mark ;
Sim, Alexander ;
Edwards, Joanne ;
Zagnoni, Michele .
SCIENTIFIC REPORTS, 2018, 8
[87]   Organ-on-a-Chip and Microfluidic Platforms for Oncology in the UK [J].
Nolan, Joanne ;
Pearce, Oliver M. T. ;
Screen, Hazel R. C. ;
Knight, Martin M. ;
Verbruggen, Stefaan W. .
CANCERS, 2023, 15 (03)
[88]   Inertial Focusing for Tumor Antigen-Dependent and -Independent Sorting of Rare Circulating Tumor Cells [J].
Ozkumur, Emre ;
Shah, Ajay M. ;
Ciciliano, Jordan C. ;
Emmink, Benjamin L. ;
Miyamoto, David T. ;
Brachtel, Elena ;
Yu, Min ;
Chen, Pin-i ;
Morgan, Bailey ;
Trautwein, Julie ;
Kimura, Anya ;
Sengupta, Sudarshana ;
Stott, Shannon L. ;
Karabacak, Nezihi Murat ;
Barber, Thomas A. ;
Walsh, John R. ;
Smith, Kyle ;
Spuhler, Philipp S. ;
Sullivan, James P. ;
Lee, Richard J. ;
Ting, David T. ;
Luo, Xi ;
Shaw, Alice T. ;
Bardia, Aditya ;
Sequist, Lecia V. ;
Louis, David N. ;
Maheswaran, Shyamala ;
Kapur, Ravi ;
Haber, Daniel A. ;
Toner, Mehmet .
SCIENCE TRANSLATIONAL MEDICINE, 2013, 5 (179)
[89]   Distinct separation of multiple CTCs using inertial focusing phenomena utilizing single-looped spiral microfluidic lab-on-chip [J].
Pakhira, Writtick ;
Kumar, R. ;
Ibrahimi, Khalid Mohd. .
CHEMICAL ENGINEERING SCIENCE, 2023, 275
[90]   A microfluidic platform for drug screening in a 3D cancer microenvironment [J].
Pandya, Hardik J. ;
Dhingra, Karan ;
Prabhakar, Devbalaji ;
Chandrasekar, Vineethkrishna ;
Natarajan, Siva Kumar ;
Vasan, Anish S. ;
Kulkarni, Ashish ;
Shafiee, Hadi .
BIOSENSORS & BIOELECTRONICS, 2017, 94 :632-642