Machine learning-based prediction models to guide the selection of Cas9 variants for efficient gene editing

被引:2
作者
Li, Jianbo [1 ,2 ,3 ]
Wu, Panfeng [1 ,2 ,3 ]
Cao, Zhoutao [2 ]
Huang, Guanlan [2 ]
Lu, Zhike [3 ]
Yan, Jianfeng [2 ]
Zhang, Heng [2 ,3 ]
Zhou, Yangfan [3 ]
Liu, Rong [1 ]
Chen, Hui [2 ]
Ma, Lijia [3 ]
Luo, Mengcheng [1 ]
机构
[1] Wuhan Univ, TaiKang Ctr Life & Med Sci, Sch Basic Med Sci, Hubei Prov Key Lab Dev Originated Dis, Wuhan 430072, Peoples R China
[2] AIdit Therapeut, 1 Yunmeng Rd,Bldg 1, Hangzhou 310024, Zhejiang, Peoples R China
[3] Westlake Univ, Sch Life Sci, Westlake Lab, 18 Shilongshan Rd, Hangzhou 310024, Zhejiang, Peoples R China
来源
CELL REPORTS | 2024年 / 43卷 / 02期
基金
美国国家科学基金会; 国家重点研发计划; 中国国家自然科学基金;
关键词
CRISPR-CAS9; NUCLEASES; CRISPR/CAS9; SYSTEMS; PAM COMPATIBILITY; HUMAN-CELLS; TARGET DNA; DESIGN; ENDONUCLEASE; SGRNAS; SPCAS9;
D O I
10.1016/j.celrep.2024.113765
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The increasing emergence of Cas9 variants has attracted broad interest, as these variants were designed to expand CRISPR applications. New Cas9 variants typically feature higher editing efficiency, improved editing specificity, or alternative PAM sequences. To select Cas9 variants and gRNAs for high-fidelity and efficient genome editing, it is crucial to systematically quantify the editing performances of gRNAs and develop prediction models based on high -quality datasets. Using synthetic gRNA-target paired libraries and next -generation sequencing, we compared the activity and specificity of gRNAs of four SpCas9 variants. The nucleotide composition in the PAM -distal region had more influence on the editing efficiency of HiFi Cas9 and LZ3 Cas9. We further developed machine learning models to predict the gRNA efficiency and specificity for the four Cas9 variants. To aid users from broad research areas, the machine learning models for the predictions of gRNA editing efficiency within human genome sites are available on our website.
引用
收藏
页数:20
相关论文
共 64 条
  • [1] Structural Plasticity of PAM Recognition by Engineered Variants of the RNA-Guided Endonuclease Cas9
    Anders, Carolin
    Bargsten, Katja
    Jinek, Martin
    [J]. MOLECULAR CELL, 2016, 61 (06) : 895 - 902
  • [2] Bai SJ, 2018, Arxiv, DOI [arXiv:1803.01271, DOI 10.48550/ARXIV.1803.01271]
  • [3] Transfer of high copy number plasmid into mammalian cells by calcium phosphate transfection
    Batard, P
    Jordan, M
    Wurm, F
    [J]. GENE, 2001, 270 (1-2) : 61 - 68
  • [4] Structural basis for mismatch surveillance by CRISPR-Cas9
    Bravo, Jack P. K.
    Liu, Mu-Sen
    Hibshman, Grace N.
    Dangerfield, Tyler L.
    Jung, Kyungseok
    McCool, Ryan S.
    Johnson, Kenneth A.
    Taylor, David W.
    [J]. NATURE, 2022, 603 (7900) : 343 - 347
  • [5] A highly specific SpCas9 variant is identified by in vivo screening in yeast
    Casini, Antonio
    Olivieri, Michele
    Petris, Gianluca
    Montagna, Claudia
    Reginato, Giordano
    Maule, Giulia
    Lorenzin, Francesca
    Prandi, Davide
    Romanel, Alessandro
    Demichelis, Francesca
    Inga, Alberto
    Cereseto, Anna
    [J]. NATURE BIOTECHNOLOGY, 2018, 36 (03) : 265 - +
  • [6] An engineered ScCas9 with broad PAM range and high specificity and activity
    Chatterjee, Pranam
    Jakimo, Noah
    Lee, Jooyoung
    Amrani, Nadia
    Rodriguez, Tomas
    Koseki, Sabrina R. T.
    Tysinger, Emma
    Qing, Rui
    Hao, Shilei
    Sontheimer, Erik J.
    Jacobson, Joseph
    [J]. NATURE BIOTECHNOLOGY, 2020, 38 (10) : 1154 - +
  • [7] Enhanced proofreading governs CRISPR-Cas9 targeting accuracy
    Chen, Janice S.
    Dagdas, Yavuz S.
    Kleinstiver, Benjamin P.
    Welch, Moira M.
    Sousa, Alexander A.
    Harrington, Lucas B. .
    Sternberg, Samuel H.
    Joung, J. Keith
    Yildiz, Ahmet
    Doudna, Jennifer A.
    [J]. NATURE, 2017, 550 (7676) : 407 - +
  • [8] Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease
    Cho, Seung Woo
    Kim, Sojung
    Kim, Jong Min
    Kim, Jin-Soo
    [J]. NATURE BIOTECHNOLOGY, 2013, 31 (03) : 230 - 232
  • [9] DeepCRISPR: optimized CRISPR guide RNA design by deep learning
    Chuai, Guohui
    Ma, Hanhui
    Yan, Jifang
    Chen, Ming
    Hong, Nanfang
    Xue, Dongyu
    Zhou, Chi
    Zhu, Chenyu
    Chen, Ke
    Duan, Bin
    Gu, Feng
    Qu, Sheng
    Huang, Deshuang
    Wei, Jia
    Liu, Qi
    [J]. GENOME BIOLOGY, 2018, 19
  • [10] CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity
    Cradick, Thomas J.
    Fine, Eli J.
    Antico, Christopher J.
    Bao, Gang
    [J]. NUCLEIC ACIDS RESEARCH, 2013, 41 (20) : 9584 - 9592