EEG Pattern With Spectral Analysis Can Prognosticate Good and Poor Neurologic Outcomes After Cardiac Arrest

被引:0
|
作者
Qing, Kurt Y. [1 ,2 ]
Forgacs, Peter B. [1 ]
Schiff, Nicholas D. [1 ]
机构
[1] Weill Cornell Med Ctr, Dept Neurol, New York Presbyterian, New York, NY USA
[2] Stanford Univ, Dept Neurol, 213 Quarry Rd, Palo Alto, CA 94304 USA
关键词
Postcardiac arrest prognostication; EEG; Quantitative EEG; QUALITY-OF-LIFE; REGIONAL-VARIATION; STATUS EPILEPTICUS; SURVIVORS; RECOVERY;
D O I
10.1097/WNP.0000000000000958
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Supplemental Digital Content is Available in the Text. Purpose:To investigate the prognostic value of a simple stratification system of electroencephalographical (EEG) patterns and spectral types for patients after cardiac arrest.Methods:In this prospectively enrolled cohort, using manually selected EEG segments, patients after cardiac arrest were stratified into five independent EEG patterns (based on background continuity and burden of highly epileptiform discharges) and four independent power spectral types (based on the presence of frequency components). The primary outcome is cerebral performance category (CPC) at discharge. Results from multimodal prognostication testing were included for comparison.Results:Of a total of 72 patients, 6 had CPC 1-2 by discharge, all of whom had mostly continuous EEG background without highly epileptiform activity at day 3. However, for the same EEG background pattern at day 3, 19 patients were discharged at CPC 3 and 15 patients at CPC 4-5. After adding spectral analysis, overall sensitivity for predicting good outcomes (CPC 1-2) was 83.3% (95% confidence interval 35.9% to 99.6%) and specificity was 97.0% (89.5% to 99.6%). In this cohort, standard prognostication testing all yielded 100% specificity but low sensitivity, with imaging being the most sensitive at 54.1% (36.9% to 70.5%).Conclusions:Adding spectral analysis to qualitative EEG analysis may further improve the diagnostic accuracy of EEG and may aid developing novel measures linked to good outcomes in postcardiac arrest coma.
引用
收藏
页码:236 / 244
页数:9
相关论文
共 38 条
  • [1] Long term functioning with poor neurologic outcome after cardiac arrest
    Nutma, Sjoukje
    Roesink, Ozzy
    van Heugten, Caroline M.
    Hofmeijer, Jeannette
    RESUSCITATION, 2024, 203
  • [2] SSEP N20 and P25 amplitudes predict poor and good neurologic outcomes after cardiac arrest
    Sarah Benghanem
    Lee S. Nguyen
    Martine Gavaret
    Jean-Paul Mira
    Frédéric Pène
    Julien Charpentier
    Angela Marchi
    Alain Cariou
    Annals of Intensive Care, 12
  • [3] SSEP N20 and P25 amplitudes predict poor and good neurologic outcomes after cardiac arrest
    Benghanem, Sarah
    Nguyen, Lee S.
    Gavaret, Martine
    Mira, Jean-Paul
    Pene, Frederic
    Charpentier, Julien
    Marchi, Angela
    Cariou, Alain
    ANNALS OF INTENSIVE CARE, 2022, 12 (01)
  • [4] Electroencephalography Predicts Poor and Good Outcomes After Cardiac Arrest: A Two-Center Study
    Rossetti, Andrea O.
    Quiroga, Diego F. Tovar
    Juan, Elsa
    Novy, Jan
    White, Roger D.
    Ben-Hamouda, Nawfel
    Britton, Jeffrey W.
    Oddo, Mauro
    Rabinstein, Alejandro A.
    CRITICAL CARE MEDICINE, 2017, 45 (07) : E674 - E682
  • [5] Personalized neuron-specific enolase level based on EEG pattern for prediction of poor outcome after cardiac arrest
    Pelle, Juliette
    Pruvost-Robieux, Estelle
    Dumas, Florence
    Ginguay, Antonin
    Charpentier, Julien
    Vigneron, Clara
    Pene, Frederic
    Mira, Jean Paul
    Cariou, Alain
    Benghanem, Sarah
    ANNALS OF INTENSIVE CARE, 2025, 15 (01):
  • [6] EEG for good outcome prediction after cardiac arrest: A multicentre cohort study
    Turella, S.
    Dankiewicz, J.
    Ben-Hamouda, N.
    Nilsen, Kb
    During, J.
    Endisch, C.
    Engstrom, M.
    Flugel, D.
    Gaspard, N.
    Grejs, A. M.
    Haenggi, M.
    Haffey, S.
    Imbach, L.
    Johnsen, B.
    Kemlink, D.
    Leithner, C.
    Legriel, S.
    Lindehammar, H.
    Mazzon, G.
    Nielsen, N.
    Peyre, A.
    Stanford, B. Ribalta
    Roman-Pognuz, E.
    Rossetti, A. O.
    Schrag, C.
    Valerianova, A.
    Wendel-Garcia, P.
    Zubler, F.
    Cronberg, T.
    Westhall, E.
    RESUSCITATION, 2024, 202
  • [7] Standardized EEG analysis to reduce the uncertainty of outcome prognostication after cardiac arrest
    Bongiovanni, Filippo
    Romagnosi, Federico
    Barbella, Giuseppina
    Di Rocco, Arianna
    Rossetti, Andrea O.
    Taccone, Fabio Silvio
    Sandroni, Claudio
    Oddo, Mauro
    INTENSIVE CARE MEDICINE, 2020, 46 (05) : 963 - 972
  • [8] Predictors of poor neurologic outcome in patients after cardiac arrest treated with hypothermia: A retrospective study
    Bisschops, Laurens L. A.
    van Alfen, Nens
    Bons, Selma
    van der Hoeven, Johannes G.
    Hoedemaekers, Cornelia W. E.
    RESUSCITATION, 2011, 82 (06) : 696 - 701
  • [9] Single electroencephalographic patterns as specific and time-dependent indicators of good and poor outcome after cardiac arrest
    Spalletti, M.
    Carrai, R.
    Scarpino, M.
    Cossu, C.
    Ammannati, A.
    Ciapetti, M.
    Buoninsegni, L. Tadini
    Peris, A.
    Valente, S.
    Grippo, A.
    Amantini, A.
    CLINICAL NEUROPHYSIOLOGY, 2016, 127 (07) : 2610 - 2617
  • [10] Free water corrected diffusion tensor imaging discriminates between good and poor outcomes of comatose patients after cardiac arrest
    Keijzer, Hanneke M.
    Duering, Marco
    Pasternak, Ofer
    Meijer, Frederick J. A.
    Verhulst, Marlous M. L. H.
    Tonino, Bart A. R.
    Blans, Michiel J.
    Hoedemaekers, Cornelia W. E.
    Klijn, Catharina J. M.
    Hofmeijer, Jeannette
    EUROPEAN RADIOLOGY, 2023, 33 (03) : 2139 - 2148