Energy-Efficient Annealing Process of Ferroelectric Hf0.5Zr0.5O2 Capacitor Using Ultraviolet-LED for Green Manufacturing

被引:0
作者
Yamada, Hirotaka [1 ,3 ]
Furue, Satoru [2 ]
Yokomori, Takehiko [2 ]
Itoya, Yuki [3 ]
Saraya, Takuya [3 ]
Hiramoto, Toshiro [3 ]
Kobayashi, Masaharu [3 ,4 ]
机构
[1] Ushio Inc, Mkt Div, Ind Proc Dept, Himeji 6710224, Japan
[2] Ushio Inc, Technol & Engn Dept, Photon Global Business Unit, Himeji 6710224, Japan
[3] Univ Tokyo, Inst Ind Sci, Tokyo 1138654, Japan
[4] Univ Tokyo, Syst Design Lab, Tokyo 1138654, Japan
关键词
Annealing; Switches; Films; Temperature measurement; Capacitors; Voltage measurement; Rapid thermal annealing; HZO; LED anneal; energy efficiency;
D O I
10.1109/JEDS.2024.3365150
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Thermal annealing process plays an important role in the formation of ferroelectric phase in Hf0.5Zr0.5O2 (HZO) thin films. In this study, the annealing process of the HZO capacitors is demonstrated using ultraviolet (UV)-LED, for the first time. Since the absorptance of the HZO films with TiN electrodes is highest in UV region, the UV-LED annealing process is promising to achieve a much more energy-efficient annealing process than a conventional halogen lamp RTA method. It was experimentally confirmed that UV-LED annealing reduces the energy consumption by nearly half compared to the conventional method. The ferroelectric characteristics obtained by this method are comparable to those achieved by the halogen lamp RTA process at 400-450(degrees)C. Grazing incidence X-ray diffraction (GIXRD) pattern shows that no monoclinic phase is formed and only the tetragonal and orthorhombic phases are confirmed. It is also confirmed that there is the in-plane tensile stress remaining after the UV-LED annealing process, which is necessary for the formation of the ferroelectric orthorhombic phase.
引用
收藏
页码:195 / 200
页数:6
相关论文
共 33 条
[1]   Improved Endurance of Ferroelectric HfxZr1-xO2 Integrated on InAs Using Millisecond Annealing [J].
Athle, Robin ;
Blom, Theodor ;
Irish, Austin ;
Persson, Anton E. O. ;
Wernersson, Lars-Erik ;
Timm, Rainer ;
Borg, Mattias .
ADVANCED MATERIALS INTERFACES, 2022, 9 (27)
[2]   A BEOL Compatible, 2-Terminals, Ferroelectric Analog Non-Volatile Memory [J].
Begon-Lours, Laura ;
Halter, Mattia ;
Pineda, Diana Davila ;
Popoff, Youri ;
Bragaglia, Valeria ;
La Porta, Antonio ;
Jubin, Daniel ;
Fompeyrine, Jean ;
Offrein, Bert Jan .
2021 5TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE (EDTM), 2021,
[3]  
Böscke TS, 2011, 2011 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM)
[4]   Ferroelectricity in hafnium oxide thin films [J].
Boescke, T. S. ;
Mueller, J. ;
Braeuhaus, D. ;
Schroeder, U. ;
Boettger, U. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[5]   Fluid Imprint and Inertial Switching in Ferroelectric La:HfO2 Capacitors [J].
Buragohain, Pratyush ;
Erickson, Adam ;
Kariuki, Pamenas ;
Mittmann, Terence ;
Richter, Claudia ;
Lomenzo, Patrick D. ;
Lu, Haidong ;
Schenk, Tony ;
Mikolajick, Thomas ;
Schroeder, Uwe ;
Gruverman, Alexei .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (38) :35115-35121
[6]   Origin of the retention loss in ferroelectric Hf0.5Zr0.5O2-based memory devices [J].
Chouprik, Anastasia ;
Kondratyuk, Ekaterina ;
Mikheev, Vitalii ;
Matveyev, Yury ;
Spiridonov, Maxim ;
Chernikova, Anna ;
Kozodaev, Maxim G. ;
Markeev, Andrey M. ;
Zenkevich, Andrei ;
Negrov, Dmitrii .
ACTA MATERIALIA, 2021, 204
[7]   On the relationship between field cycling and imprint in ferroelectric Hf0.5Zr0.5O2 [J].
Fengler, F. P. G. ;
Hoffmann, M. ;
Slesazeck, S. ;
Mikolajick, T. ;
Schroeder, U. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (20)
[8]  
Francois T, 2019, INT EL DEVICES MEET, DOI [10.1109/iedm19573.2019.8993485, 10.1109/IEDM19573.2019.8993485]
[9]   Three-dimensional visualization in powder diffraction [J].
Izumi, Fujio ;
Momma, Koichi .
APPLIED CRYSTALLOGRAPHY XX, 2007, 130 :15-20
[10]   The Influence of Top and Bottom Metal Electrodes on Ferroelectricity of Hafnia [J].
Lee, Yongsun ;
Goh, Youngin ;
Hwang, Junghyeon ;
Das, Dipjyoti ;
Jeon, Sanghun .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (02) :523-528