共 38 条
- [1] [Anonymous], 2022, XGBoost Parameters-xgboost 1.7.5 documentation
- [2] Banerjee P., 2020, NUCLEIC ACIDS RES, V48, pW580, DOI [10.1093/nar/gkaa166, DOI 10.1093/NAR/GKAA166]
- [3] KNIME:: The Konstanz Information Miner [J]. DATA ANALYSIS, MACHINE LEARNING AND APPLICATIONS, 2008, : 319 - 326
- [6] XGBoost: A Scalable Tree Boosting System [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
- [8] CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
- [9] Improved Prediction of Aqueous Solubility of Novel Compounds by Going Deeper With Deep Learning [J]. FRONTIERS IN ONCOLOGY, 2020, 10
- [10] SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules [J]. SCIENTIFIC REPORTS, 2017, 7