Exploiting classifier inter-level features for efficient out-of-distribution detection

被引:1
|
作者
Fayyad, Jamil [1 ]
Gupta, Kashish [2 ]
Mahdian, Navid [2 ]
Gruyer, Dominique [3 ]
Najjaran, Homayoun [2 ]
机构
[1] Univ British Columbia, Sch Engn, 3333 Univ Way, Kelowna, BC V1V 1V7, Canada
[2] Univ Victoria, Fac Engn & Comp Sci, 3800 Finnerty Rd, Victoria, BC V8P 5C2, Canada
[3] Univ Gustave Eiffel, PICS L COSYS, IFSTTAR, 25 Marronniers, F-78000 Champs Sur Marne, France
关键词
Out -of -distribution detection; Deep learning -based classification; Machine learning; Feature exploitation; Intermediate feature extraction;
D O I
10.1016/j.imavis.2023.104897
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep learning approaches have achieved state-of-the-art performance in a wide range of applications. Most often, however, it is falsely assumed that samples at inference follow a similar distribution as the training data. This assumption impairs models' ability to handle Out-of-Distribution (OOD) data during deployment. While several OOD detection approaches mostly focus on outputs of the last layer, we propose a novel mechanism that exploits features extracted from intermediate layers of a deep classifier. Specifically, we train an off-the-shelf auxiliary network using features of early layers to learn distinctive representations that improve OOD detection. The proposed network can be appended to any classification model without imposing any modification to its original architecture. Additionally, the mechanism does not require access to OOD data during training. We evaluate the performance of the mechanism on a variety of backbone architectures and datasets for near-OOD and far-OOD scenarios. The results demonstrate improvements in OOD detection compared to other state-of-the-art approaches. In particular, our proposed mechanism improves AUROC by 14.2% and 8.3% in comparison to the strong OOD baseline method, and by 3.2% and 3.9% in comparison to the second-best performing approach, on CIFAR-10 and CIFAR-100 datasets respectively.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Effective Out-of-Distribution Detection in Classifier Based on PEDCC-Loss
    Zhu, Qiuyu
    Zheng, Guohui
    Yan, Yingying
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1937 - 1949
  • [2] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [3] Effective Out-of-Distribution Detection in Classifier Based on PEDCC-Loss
    Qiuyu Zhu
    Guohui Zheng
    Yingying Yan
    Neural Processing Letters, 2023, 55 : 1937 - 1949
  • [4] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [5] An Efficient Data Augmentation Network for Out-of-Distribution Image Detection
    Lin, Cheng-Hung
    Lin, Cheng-Shian
    Chou, Po-Yung
    Hsu, Chen-Chien
    IEEE ACCESS, 2021, 9 : 35313 - 35323
  • [6] Efficient detection of adversarial, out-of-distribution and other misclassified samples
    Lust, Julia
    Condurache, Alexandru P.
    NEUROCOMPUTING, 2022, 470 : 335 - 343
  • [7] On the Learnability of Out-of-distribution Detection
    Fang, Zhen
    Li, Yixuan
    Liu, Feng
    Han, Bo
    Lu, Jie
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25
  • [8] Robust Cough Detection With Out-of-Distribution Detection
    Chen, Yuhan
    Attri, Pankaj
    Barahona, Jeffrey
    Hernandez, Michelle L.
    Carpenter, Delesha
    Bozkurt, Alper
    Lobaton, Edgar
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (07) : 3210 - 3221
  • [9] Semantic enhanced for out-of-distribution detection
    Jiang, Weijie
    Yu, Yuanlong
    FRONTIERS IN NEUROROBOTICS, 2022, 16
  • [10] Timing Performance Benchmarking of Out-of-Distribution Detection Algorithms
    Siyu Luan
    Zonghua Gu
    Amin Saremi
    Leonid Freidovich
    Lili Jiang
    Shaohua Wan
    Journal of Signal Processing Systems, 2023, 95 : 1355 - 1370