Application of optimization-based regression analysis for evaluation of frost durability of recycled aggregate concrete
被引:52
作者:
Esmaeili-Falak, Mahzad
论文数: 0引用数: 0
h-index: 0
机构:
Islamic Azad Univ, Dept Civil Engn, North Tehran Branch, Tehran, Iran
Islamic Azad Univ, Dept Civil Engn, North Tehran Branch, Tehran, IranIslamic Azad Univ, Dept Civil Engn, North Tehran Branch, Tehran, Iran
Esmaeili-Falak, Mahzad
[1
,3
]
Sarkhani Benemaran, Reza
论文数: 0引用数: 0
h-index: 0
机构:
Univ Zanjan, Fac Geotech Engn, Dept Civil Engn, Zanjan, IranIslamic Azad Univ, Dept Civil Engn, North Tehran Branch, Tehran, Iran
Sarkhani Benemaran, Reza
[2
]
机构:
[1] Islamic Azad Univ, Dept Civil Engn, North Tehran Branch, Tehran, Iran
Concrete constructed using recycled aggregates in place of natural aggregates is an efficient approach to increase the construction sector's sustainability. To improve recycled aggregate concrete (RAC$$ \mathrm{RAC} $$) technologies in permafrost, it is essential to certify the stability in frost-induced conditions. The main goal of this study was to use support vector regression (SVR$$ \mathrm{SVR} $$) methods to forecast the frost durability (DF$$ \mathrm{DF} $$) of RAC$$ \mathrm{RAC} $$ on the basis of durability agent value in cold climates. Herein, three optimization methods called Ant lion optimization (ALO$$ \mathrm{ALO} $$), Grey wolf optimization (GWO$$ \mathrm{GWO} $$), and Henry Gas Solubility Optimization (HGSO$$ \mathrm{HGSO} $$) were employed for indicating optimal values of SVR$$ \mathrm{SVR} $$ key parameters. The results depicted that all developed models have capability in predicting the DF$$ \mathrm{DF} $$ of RAC$$ \mathrm{RAC} $$ in cold regions. The values of OBJ$$ \mathrm{OBJ} $$ as a comprehensive index depicted that the GWO-SVR$$ \mathrm{GWO}-\mathrm{SVR} $$ model has the higher value at 0.0571 as the weakest model, then ALO-SVR$$ \mathrm{ALO}-\mathrm{SVR} $$ at 0.0312 recognized as the second-highest model, and finally the HGSO-SVR$$ \mathrm{HGSO}-\mathrm{SVR} $$ system at 0.0224 mentioned as outperformed model. ALO-SVR$$ \mathrm{ALO}-\mathrm{SVR} $$ and GWO-SVR$$ \mathrm{GWO}-\mathrm{SVR} $$ approaches were likewise capable of accurately forecasting the DF$$ \mathrm{DF} $$ of RAC$$ \mathrm{RAC} $$ in cold regions, but the created HGSO-SVR$$ \mathrm{HGSO}-\mathrm{SVR} $$ method outperformed them all when taking into account the explanations and justifications.
机构:
Univ Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, Brazil
Amario, Mayara
Rangel, Caroline Santana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, Brazil
Rangel, Caroline Santana
论文数: 引用数:
h-index:
机构:
Pepe, Marco
Toledo Filho, Romildo Dias
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, Brazil
机构:
Univ Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, Brazil
Amario, Mayara
Rangel, Caroline Santana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, Brazil
Rangel, Caroline Santana
论文数: 引用数:
h-index:
机构:
Pepe, Marco
Toledo Filho, Romildo Dias
论文数: 0引用数: 0
h-index: 0
机构:
Univ Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, BrazilUniv Fed Rio de Janeiro, COPPE, Dept Civil Engn, POB 68506, BR-21945970 Rio De Janeiro, Brazil