Weak and strong convergence of a modified double inertial projection algorithm for solving variational inequality problems

被引:2
|
作者
Zhang, Huan [1 ]
Liu, Xiaolan [1 ,2 ,3 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Math & Stat, Zigong 643000, Sichuan, Peoples R China
[2] South Sichuan Ctr Appl Math, Zigong 643000, Sichuan, Peoples R China
[3] Artificial Intelligence Key Lab Sichuan Prov, Zigong 643000, Sichuan, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 130卷
基金
中国国家自然科学基金;
关键词
Double inertial; Variational inequality; Weak convergence; Strong convergence; SUBGRADIENT EXTRAGRADIENT METHOD;
D O I
10.1016/j.cnsns.2023.107766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new double inertial projection algorithm by combining the subgradient extra gradient algorithm with the projection contraction algorithm. On one hand, our algorithm requires the mapping to be Lipschitz continuous, but without the Lipschitz constant. On the other hand, this algorithm only requires the mapping is quasimonotone.Under some mild conditions, we obtain a weak convergence result of the algorithm. In addition, we give a strong convergence result of the algorithm when the mapping is strongly pseudomonotone. Some numerical experiments are given to show the effectiveness of the proposed algorithm.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Strong Convergence of a Hybrid Projection Algorithm for Equilibrium Problems, Variational Inequality Problems and Fixed Point Problems in a Banach Space
    Chuayjan, Wariam
    Thianwan, Sornsak
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [32] The extragradient algorithm with inertial effects for solving the variational inequality
    Dong, Qiao-Li
    Lu, Yan-Yan
    Yang, Jinfeng
    OPTIMIZATION, 2016, 65 (12) : 2217 - 2226
  • [33] A new inertial double-projection method for solving variational inequalities
    Gibali, Aviv
    Dang Van Hieu
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2019, 21 (04)
  • [34] Inertial projection-type methods for solving pseudomonotone variational inequality problems in Hilbert space
    Simeon Reich
    Duong Viet Thong
    Prasit Cholamjiak
    Luong Van Long
    Numerical Algorithms, 2021, 88 : 813 - 835
  • [35] Inertial modified projection algorithm with self-adaptive technique for solving pseudo-monotone variational inequality problems in Hilbert spaces
    Tian, Ming
    Xu, Gang
    OPTIMIZATION, 2022, 71 (13) : 3965 - 3980
  • [36] Convergence Analysis On Hybrid Projection Algorithms For Equilibrium Problems and Variational Inequality Problems
    Qin, X.
    Cho, Y. J.
    Kang, S. M.
    MATHEMATICAL MODELLING AND ANALYSIS, 2009, 14 (03) : 335 - 351
  • [37] Strong convergence of inertial subgradient extragradient algorithm for solving pseudomonotone equilibrium problems
    Thong, Duong Viet
    Cholamjiak, Prasit
    Rassias, Michael T.
    Cho, Yeol Je
    OPTIMIZATION LETTERS, 2022, 16 (02) : 545 - 573
  • [38] Novel inertial extragradient method for solving pseudomonotone variational inequality problems
    Thong, Duong Viet
    Li, Xiao-Huan
    Dung, Vu Tien
    Huyen, Pham Thi Huong
    Tam, Hoang Thi Thanh
    OPTIMIZATION, 2024,
  • [39] On the weak convergence for solving semistrictly quasi-monotone variational inequality problems
    S. S. Chang
    L. Salahuddin
    M. Wang
    Journal of Inequalities and Applications, 2019
  • [40] On the weak convergence for solving semistrictly quasi-monotone variational inequality problems
    Chang, S. S.
    Salahuddin
    Wang, L.
    Liu, M.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)