Weak and strong convergence of a modified double inertial projection algorithm for solving variational inequality problems

被引:2
|
作者
Zhang, Huan [1 ]
Liu, Xiaolan [1 ,2 ,3 ]
机构
[1] Sichuan Univ Sci & Engn, Coll Math & Stat, Zigong 643000, Sichuan, Peoples R China
[2] South Sichuan Ctr Appl Math, Zigong 643000, Sichuan, Peoples R China
[3] Artificial Intelligence Key Lab Sichuan Prov, Zigong 643000, Sichuan, Peoples R China
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2024年 / 130卷
基金
中国国家自然科学基金;
关键词
Double inertial; Variational inequality; Weak convergence; Strong convergence; SUBGRADIENT EXTRAGRADIENT METHOD;
D O I
10.1016/j.cnsns.2023.107766
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a new double inertial projection algorithm by combining the subgradient extra gradient algorithm with the projection contraction algorithm. On one hand, our algorithm requires the mapping to be Lipschitz continuous, but without the Lipschitz constant. On the other hand, this algorithm only requires the mapping is quasimonotone.Under some mild conditions, we obtain a weak convergence result of the algorithm. In addition, we give a strong convergence result of the algorithm when the mapping is strongly pseudomonotone. Some numerical experiments are given to show the effectiveness of the proposed algorithm.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Modified inertial projection and contraction algorithms for solving variational inequality problems with non-Lipschitz continuous operators
    Bing Tan
    Xiaolong Qin
    Analysis and Mathematical Physics, 2022, 12
  • [22] INERTIAL SHRINKING PROJECTION ALGORITHMS FOR SOLVING HIERARCHICAL VARIATIONAL INEQUALITY PROBLEMS
    Tan, Bing
    Xu, Shanshan
    Li, Songxiao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (04) : 871 - 884
  • [23] INERTIAL HYBRID AND SHRINKING PROJECTION ALGORITHMS FOR SOLVING VARIATIONAL INEQUALITY PROBLEMS
    Tan, Bing
    Xu, Shanshan
    Li, Songxiao
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2020, 21 (10) : 2193 - 2206
  • [24] Self adaptive alternated inertial algorithm for solving variational inequality and fixed point problems
    Wang, Yuanheng
    Wu, Chenjing
    Shehu, Yekini
    Huang, Bin
    AIMS MATHEMATICS, 2024, 9 (04): : 9705 - 9720
  • [25] Strong Convergence of Multi-Parameter Projection Methods for Variational Inequality Problems
    Dang Van Hieu
    Le Dung Muu
    Pham Kim Quy
    MATHEMATICAL MODELLING AND ANALYSIS, 2022, 27 (02) : 242 - 262
  • [26] An Inertial Projection and Contraction Scheme for Monotone Variational Inequality Problems
    Garba, Abor Isa
    Abubakar, Jamilu
    Sidi, Shehu Abubakar
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (03): : 1112 - 1133
  • [27] A strong convergence of modified subgradient extragradient method for solving bilevel pseudomonotone variational inequality problems
    Duong Viet Thong
    Dang Van Hieu
    OPTIMIZATION, 2020, 69 (06) : 1313 - 1334
  • [28] A simple projection method for solving quasimonotone variational inequality problems
    Izuchukwu, Chinedu
    Shehu, Yekini
    Yao, Jen-Chih
    OPTIMIZATION AND ENGINEERING, 2023, 24 (02) : 915 - 938
  • [29] An inertial projection and contraction method for solving bilevel quasimonotone variational inequality problems
    Abuchu, J. A.
    Ugwunnadi, G. C.
    Narain, O. K.
    JOURNAL OF ANALYSIS, 2023, 31 (04): : 2915 - 2942
  • [30] An inertial projection and contraction method for solving bilevel quasimonotone variational inequality problems
    J. A. Abuchu
    G. C. Ugwunnadi
    O. K. Narain
    The Journal of Analysis, 2023, 31 (4) : 2915 - 2942