Chern number and Hall conductivity in three-dimensional quantum Hall effect in Weyl semimetals

被引:2
|
作者
Chang, Mingqi [1 ]
Ma, Rong [2 ]
Sheng, Li [3 ,4 ,5 ]
机构
[1] Nanjing Univ Sci & Technol, Interdisciplinary Ctr Fundamental & Frontier Sci, Jiangyin 214443, Jiangsu, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Jiangsu Key Lab Optoelect Detect Atmosphere & Ocea, Nanjing 210044, Peoples R China
[3] Nanjing Univ, Natl Lab Solid State Microstruct, Nanjing 210093, Peoples R China
[4] Nanjing Univ, Dept Phys, Nanjing 210093, Peoples R China
[5] Nanjing Univ, Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
STATES; GAS;
D O I
10.1103/PhysRevB.108.165416
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The three-dimensional (3D) quantum Hall effect (QHE) in topological semimetals has attracted much interest in recent years. We study the 3D QHE in Weyl semimetals combining the Chern number calculated from Landau levels and the Hall conductivity calculated using the Kubo formula from the bulk-edge correspondence. We derive the Chern numbers under magnetic field using topological analysis. We get the magnetic field and Fermi energy dependence of the Hall conductivity according to the correspondence between the Chern number and Hall conductivity in a Weyl semimetal slab with the periodic boundary condition from the perspective of bulk states. We numerically calculate the Hall conductivity using the Kubo formula in a Weyl semimetal slab with the open boundary condition. The results of the Hall conductivity using the periodic boundary condition and open boundary condition are consistent. Our study demonstrates the 3D QHE in Weyl semimetals from both the bulk states and edge states through the bulk-edge correspondence.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Three-dimensional quantum Hall effect in Weyl semimetals
    Chang, Mingqi
    Geng, Hao
    Sheng, Li
    Xing, D. Y.
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [2] Three-dimensional quantum Hall effect in Weyl and double-Weyl semimetals
    Gao, Zhi-Peng
    Li, Zhi
    Zhang, Dan-Wei
    PHYSICS LETTERS A, 2018, 382 (44) : 3205 - 3210
  • [3] Three-dimensional quantum Hall effect and magnetothermoelectric properties in Weyl semimetals
    Ma, R.
    Sheng, D. N.
    Sheng, L.
    PHYSICAL REVIEW B, 2021, 104 (07)
  • [4] Anisotropic Three-Dimensional Quantum Hall Effect and Magnetotransport in Mesoscopic Weyl Semimetals
    Zhang, Xiao-Xiao
    Nagaosa, Naoto
    NANO LETTERS, 2022, 22 (07) : 3033 - 3039
  • [5] Nonlinear Hall Effect in Three-Dimensional Weyl and Dirac Semimetals
    Shvetsov, O. O.
    Esin, V. D.
    Timonina, A., V
    Kolesnikov, N. N.
    Deviatov, E., V
    JETP LETTERS, 2019, 109 (11) : 715 - 721
  • [6] Nonlinear Hall Effect in Three-Dimensional Weyl and Dirac Semimetals
    O. O. Shvetsov
    V. D. Esin
    A. V. Timonina
    N. N. Kolesnikov
    E. V. Deviatov
    JETP Letters, 2019, 109 : 715 - 721
  • [7] Understanding the three-dimensional quantum Hall effect in generic multi-Weyl semimetals
    Xiong, Feng
    Honerkamp, Carsten
    Kennes, Dante M.
    Nag, Tanay
    PHYSICAL REVIEW B, 2022, 106 (04)
  • [8] Fractional Quantum Hall Effect in Weyl Semimetals
    Wang, Chong
    Gioia, L.
    Burkov, A. A.
    PHYSICAL REVIEW LETTERS, 2020, 124 (09)
  • [9] Three-dimensional quantum Hall effect in the excitonic phase of a Weyl semimetal
    Chang, Mingqi
    Sheng, Li
    PHYSICAL REVIEW B, 2021, 103 (24)
  • [10] Magnus Hall effect in three-dimensional topological semimetals
    Sekh, Sajid
    Mandal, Ipsita
    EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (06):