Functional CLT for non-Hermitian random matrices

被引:1
作者
Erdos, Laszlo [1 ]
Ji, Hong Chang [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 04期
基金
欧洲研究理事会;
关键词
Linear statistics; Central limit theorem; Gaussian free field; LINEAR EIGENVALUE STATISTICS; GAUSSIAN FLUCTUATIONS; CONVERGENCE; ENSEMBLES;
D O I
10.1214/22-AIHP1304
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For large dimensional non-Hermitian random matrices X with real or complex independent, identically distributed, centered entries, we consider the fluctuations of f (X) as a matrix where f is an analytic function around the spectrum of X. We prove that for a generic bounded square matrix A, the quantity Tr f (X)A exhibits Gaussian fluctuations as the matrix size grows to infinity, which consists of two independent modes corresponding to the tracial and traceless parts of A. We find a new formula for the variance of the traceless part that involves the Frobenius norm of A and the L2-norm off on the boundary of the limiting spectrum.
引用
收藏
页码:2083 / 2105
页数:23
相关论文
共 50 条
[11]   Quaternionic R transform and non-Hermitian random matrices [J].
Burda, Zdzislaw ;
Swiech, Artur .
PHYSICAL REVIEW E, 2015, 92 (05)
[12]   RANDOM MATRICES: UNIVERSALITY OF LOCAL SPECTRAL STATISTICS OF NON-HERMITIAN MATRICES [J].
Tao, Terence ;
Vu, Van .
ANNALS OF PROBABILITY, 2015, 43 (02) :782-874
[13]   Analytic approach for the number statistics of non-Hermitian random matrices [J].
Perez Castillo, Isaac ;
Guzman-Gonzalez, Edgar ;
Ramos Sanchez, Antonio Tonatiuh ;
Metz, Fernando L. .
PHYSICAL REVIEW E, 2021, 103 (06)
[14]   PARTIAL LINEAR EIGENVALUE STATISTICS FOR NON-HERMITIAN RANDOM MATRICES [J].
O'Rourke, S. ;
Williams, N. .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2022, 67 (04) :613-632
[15]   Central Limit Theorem for Linear Eigenvalue Statistics of Non-Hermitian Random Matrices [J].
Cipolloni, Giorgio ;
Erdos, Laszlo ;
Schroeder, Dominik .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2023, 76 (05) :946-1034
[16]   Universal hard-edge statistics of non-Hermitian random matrices [J].
Xiao, Zhenyu ;
Shindou, Ryuichi ;
Kawabata, Kohei .
PHYSICAL REVIEW RESEARCH, 2024, 6 (02)
[17]   FLUCTUATIONS OF MATRIX ENTRIES OF ANALYTIC FUNCTIONS OF NON-HERMITIAN RANDOM MATRICES [J].
O'Rourke, Sean .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (03)
[18]   Dissipative quantum dynamics, phase transitions, and non-Hermitian random matrices [J].
Prasad, Mahaveer ;
Yadalam, Hari Kumar ;
Aron, Camille ;
Kulkarni, Manas .
PHYSICAL REVIEW A, 2022, 105 (05)
[19]   Non-Hermitian diluted banded random matrices: Scaling of eigenfunction and spectral properties [J].
Hernandez-Sanchez, M. ;
Tapia-Labra, G. ;
Mendez-Bermudez, J. A. .
PHYSICAL REVIEW E, 2024, 110 (04)
[20]   Singular-Value Statistics of Non-Hermitian Random Matrices and Open Quantum Systems [J].
Kawabata, Kohei ;
Xiao, Zhenyu ;
Ohtsuki, Tomi ;
Shindou, Ryuichi .
PRX QUANTUM, 2023, 4 (04)