Functional CLT for non-Hermitian random matrices

被引:1
|
作者
Erdos, Laszlo [1 ]
Ji, Hong Chang [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 04期
基金
欧洲研究理事会;
关键词
Linear statistics; Central limit theorem; Gaussian free field; LINEAR EIGENVALUE STATISTICS; GAUSSIAN FLUCTUATIONS; CONVERGENCE; ENSEMBLES;
D O I
10.1214/22-AIHP1304
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For large dimensional non-Hermitian random matrices X with real or complex independent, identically distributed, centered entries, we consider the fluctuations of f (X) as a matrix where f is an analytic function around the spectrum of X. We prove that for a generic bounded square matrix A, the quantity Tr f (X)A exhibits Gaussian fluctuations as the matrix size grows to infinity, which consists of two independent modes corresponding to the tracial and traceless parts of A. We find a new formula for the variance of the traceless part that involves the Frobenius norm of A and the L2-norm off on the boundary of the limiting spectrum.
引用
收藏
页码:2083 / 2105
页数:23
相关论文
共 50 条
  • [11] On delocalization of eigenvectors of random non-Hermitian matrices
    Lytova, Anna
    Tikhomirov, Konstantin
    PROBABILITY THEORY AND RELATED FIELDS, 2020, 177 (1-2) : 465 - 524
  • [12] Universality classes of non-Hermitian random matrices
    Hamazaki, Ryusuke
    Kawabata, Kohei
    Kura, Naoto
    Ueda, Masahito
    PHYSICAL REVIEW RESEARCH, 2020, 2 (02):
  • [13] New applications of non-Hermitian random matrices
    Zabrodin, A
    ANNALES HENRI POINCARE, 2003, 4 (Suppl 2): : S851 - S861
  • [14] Edge universality for non-Hermitian random matrices
    Giorgio Cipolloni
    László Erdős
    Dominik Schröder
    Probability Theory and Related Fields, 2021, 179 : 1 - 28
  • [15] Local laws for non-Hermitian random matrices
    F. Götze
    A. A. Naumov
    A. N. Tikhomirov
    Doklady Mathematics, 2017, 96 : 558 - 560
  • [16] New Applications of Non-Hermitian Random Matrices
    A. Zabrodin
    Annales Henri Poincaré, 2003, 4 : 851 - 861
  • [17] Edge universality for non-Hermitian random matrices
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 179 (1-2) : 1 - 28
  • [18] Rank One Non-Hermitian Perturbations of Hermitian β-Ensembles of Random Matrices
    Kozhan, Rostyslav
    JOURNAL OF STATISTICAL PHYSICS, 2017, 168 (01) : 92 - 108
  • [19] ON THE SPECTRUM OF SUM AND PRODUCT OF NON-HERMITIAN RANDOM MATRICES
    Bordenave, Charles
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 104 - 113
  • [20] Spectral Radii of Large Non-Hermitian Random Matrices
    Jiang, Tiefeng
    Qi, Yongcheng
    JOURNAL OF THEORETICAL PROBABILITY, 2017, 30 (01) : 326 - 364