共 22 条
Functional CLT for non-Hermitian random matrices
被引:1
作者:
Erdos, Laszlo
[1
]
Ji, Hong Chang
[1
]
机构:
[1] IST Austria, Klosterneuburg, Austria
来源:
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES
|
2023年
/
59卷
/
04期
基金:
欧洲研究理事会;
关键词:
Linear statistics;
Central limit theorem;
Gaussian free field;
LINEAR EIGENVALUE STATISTICS;
GAUSSIAN FLUCTUATIONS;
CONVERGENCE;
ENSEMBLES;
D O I:
10.1214/22-AIHP1304
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
For large dimensional non-Hermitian random matrices X with real or complex independent, identically distributed, centered entries, we consider the fluctuations of f (X) as a matrix where f is an analytic function around the spectrum of X. We prove that for a generic bounded square matrix A, the quantity Tr f (X)A exhibits Gaussian fluctuations as the matrix size grows to infinity, which consists of two independent modes corresponding to the tracial and traceless parts of A. We find a new formula for the variance of the traceless part that involves the Frobenius norm of A and the L2-norm off on the boundary of the limiting spectrum.
引用
收藏
页码:2083 / 2105
页数:23
相关论文