Functional CLT for non-Hermitian random matrices

被引:1
作者
Erdos, Laszlo [1 ]
Ji, Hong Chang [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 04期
基金
欧洲研究理事会;
关键词
Linear statistics; Central limit theorem; Gaussian free field; LINEAR EIGENVALUE STATISTICS; GAUSSIAN FLUCTUATIONS; CONVERGENCE; ENSEMBLES;
D O I
10.1214/22-AIHP1304
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For large dimensional non-Hermitian random matrices X with real or complex independent, identically distributed, centered entries, we consider the fluctuations of f (X) as a matrix where f is an analytic function around the spectrum of X. We prove that for a generic bounded square matrix A, the quantity Tr f (X)A exhibits Gaussian fluctuations as the matrix size grows to infinity, which consists of two independent modes corresponding to the tracial and traceless parts of A. We find a new formula for the variance of the traceless part that involves the Frobenius norm of A and the L2-norm off on the boundary of the limiting spectrum.
引用
收藏
页码:2083 / 2105
页数:23
相关论文
共 22 条
[1]  
Alt J., 2021, PROBAB MATH PHYS, V2, P221, DOI [10.2140/pmp.2021.2.1, DOI 10.2140/PMP.2021.2.221]
[2]   Location of the spectrum of Kronecker random matrices [J].
Alt, Johannes ;
Erdos, Laszlo ;
Krueger, Torben ;
Nemish, Yuriy .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02) :661-696
[3]   LOCAL INHOMOGENEOUS CIRCULAR LAW [J].
Alt, Johannes ;
Erdos, Laszlo ;
Krueger, Torben .
ANNALS OF APPLIED PROBABILITY, 2018, 28 (01) :148-203
[4]   On the convergence of the spectral empirical process of Wigner matrices [J].
Bai, ZD ;
Yao, J .
BERNOULLI, 2005, 11 (06) :1059-1092
[5]  
Bai ZD, 1997, ANN PROBAB, V25, P494
[6]   Local circular law for random matrices [J].
Bourgade, Paul ;
Yau, Horng-Tzer ;
Yin, Jun .
PROBABILITY THEORY AND RELATED FIELDS, 2014, 159 (3-4) :545-595
[7]  
Cipolloni G., 2020, arXiv
[8]  
Cipolloni G, 2023, Arxiv, DOI arXiv:1912.04100
[9]   Gaussian Fluctuations for Linear Eigenvalue Statistics of Products of Independent iid Random Matrices [J].
Coston, Natalie ;
O'Rourke, Sean .
JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (03) :1541-1612
[10]   POWER LAW DECAY FOR SYSTEMS OF RANDOMLY COUPLED DIFFERENTIAL EQUATIONS [J].
Erdos, Laszlo ;
Krueger, Torben ;
Renfrew, David .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (03) :3271-3290