Functional CLT for non-Hermitian random matrices

被引:1
|
作者
Erdos, Laszlo [1 ]
Ji, Hong Chang [1 ]
机构
[1] IST Austria, Klosterneuburg, Austria
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2023年 / 59卷 / 04期
基金
欧洲研究理事会;
关键词
Linear statistics; Central limit theorem; Gaussian free field; LINEAR EIGENVALUE STATISTICS; GAUSSIAN FLUCTUATIONS; CONVERGENCE; ENSEMBLES;
D O I
10.1214/22-AIHP1304
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For large dimensional non-Hermitian random matrices X with real or complex independent, identically distributed, centered entries, we consider the fluctuations of f (X) as a matrix where f is an analytic function around the spectrum of X. We prove that for a generic bounded square matrix A, the quantity Tr f (X)A exhibits Gaussian fluctuations as the matrix size grows to infinity, which consists of two independent modes corresponding to the tracial and traceless parts of A. We find a new formula for the variance of the traceless part that involves the Frobenius norm of A and the L2-norm off on the boundary of the limiting spectrum.
引用
收藏
页码:2083 / 2105
页数:23
相关论文
共 50 条
  • [1] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Jana, Indrajit
    JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (02)
  • [2] CLT for Non-Hermitian Random Band Matrices with Variance Profiles
    Indrajit Jana
    Journal of Statistical Physics, 2022, 187
  • [3] ON WORDS OF NON-HERMITIAN RANDOM MATRICES
    Dubach, Guillaume
    Peled, Yuval
    ANNALS OF PROBABILITY, 2021, 49 (04): : 1886 - 1916
  • [4] Towards non-Hermitian random Levy matrices
    Gudowska-Nowak, Ewa
    Jarosz, Andrzej
    Nowak, Maciej A.
    Papp, Gabor
    ACTA PHYSICA POLONICA B, 2007, 38 (13): : 4089 - 4104
  • [5] Resonances as eigenvalues of non-Hermitian Random Matrices
    Fyodorov, YV
    Sommers, HJ
    5TH WIGNER SYMPOSIUM, PROCEEDINGS, 1998, : 287 - 289
  • [6] ON THE RIGHTMOST EIGENVALUE OF NON-HERMITIAN RANDOM MATRICES
    Cipolloni, Giorgio
    Erdos, Laszlo
    Schroeder, Dominik
    Xu, Yuanyuan
    ANNALS OF PROBABILITY, 2023, 51 (06): : 2192 - 2242
  • [7] Products of independent non-Hermitian random matrices
    O'Rourke, Sean
    Soshnikov, Alexander
    ELECTRONIC JOURNAL OF PROBABILITY, 2011, 16 : 2219 - 2245
  • [8] Local Laws for Non-Hermitian Random Matrices
    Goetze, F.
    Naumov, A. A.
    Tikhomirov, A. N.
    DOKLADY MATHEMATICS, 2017, 96 (03) : 558 - 560
  • [9] Wigner surmise for Hermitian and non-Hermitian chiral random matrices
    Akemann, G.
    Bittner, E.
    Phillips, M. J.
    Shifrin, L.
    PHYSICAL REVIEW E, 2009, 80 (06):
  • [10] On delocalization of eigenvectors of random non-Hermitian matrices
    Anna Lytova
    Konstantin Tikhomirov
    Probability Theory and Related Fields, 2020, 177 : 465 - 524