Design and synthesis of non-fused non-fullerene acceptors containing naphthobisthiadiazole for organic solar cells

被引:5
|
作者
Li, Yuanfeng [1 ,2 ]
Zhang, Difei [1 ]
Huang, Zhenqiang [1 ]
Zhang, Tianyang [1 ,2 ]
Zheng, Nan [1 ]
Peng, Feng [1 ,2 ]
Ying, Lei [1 ,2 ]
Huang, Fei [1 ,2 ]
机构
[1] South China Univ Technol, Inst Polymer Optoelect Mat & Devices, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Peoples R China
[2] South China Inst Collaborat Innovat, Dongguan 523808, Peoples R China
关键词
NONFULLERENE ACCEPTORS; CONJUGATED POLYMER; ELECTRON-ACCEPTOR; SIDE-CHAINS; PERFORMANCE; EFFICIENCY; PHOTODETECTORS; RECOMBINATION; MORPHOLOGY; ENABLES;
D O I
10.1039/d3tc01742g
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Most of the non-fullerene acceptors that have recently emerged for application in organic solar cells are based on fused rings as the central unit, typically requiring multi-step reactions that inevitably increase the overall cost of the target molecules. To explore more synthetically accessible non-fullerene acceptors, here we designed and synthesized two naphtho[1,2-c:5,6-c ']bis([1,2,5]thiadiazole) derivatives, containing fluorinated and chlorinated dicyanomethylidene-indan-1-one units as the flanking end-groups, which were denoted as NTIC-4F and NTIC-4Cl, respectively. The halogen substitution has trivial effects on the optical and frontier molecular orbital energy levels, while the fluorinated NTIC-4F showed distinct thermal properties and crystallinity compared to the chlorinated counterpart NTIC-4Cl. When blended with the electron-donating polymer PTzBI-dF, both compounds showed good miscibility and favorable molecular orientation, as shown in both atomic force microscopy and transmission electron microscopy images. After processing the PTzBI-dF:NTIC-4F or PTzBI-dF:NTIC-4Cl bulk-heterojunction layer with a trivial amount of chloronaphthalene as the solvent additive, it is noted that the film based on NTIC-4Cl showed a more favorable morphology and thus resulted in slightly higher power conversion efficiency of the organic solar cells. These findings provide guidance for the design of non-fused non-fullerene acceptors based on naphthobisthiadiazole as the central unit. Two non-fullerene acceptors containing naphtho[1,2-c:5,6-c ']bis([1,2,5]thiadiazole) moieties with fluorinated and chlorinated dicyanomethylidene-indan-1-one units as the flanking end-groups were developed and used for constructing organic solar cells.
引用
收藏
页码:15426 / 15434
页数:9
相关论文
共 50 条
  • [1] Non-fused and fused ring non-fullerene acceptors
    Dominguez, Rocio
    Moreno, Leydi M.
    Langa, Fernando
    de la Cruz, Pilar
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2024, 74
  • [2] Aggregation of non-fullerene acceptors in organic solar cells
    Li, Donghui
    Zhang, Xue
    Liu, Dan
    Wang, Tao
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (31) : 15607 - 15619
  • [3] Molecular Insights of Non-fused Ring Acceptors for High-Performance Non-fullerene Organic Solar Cells
    Li, Yibin
    Yu, Jiangsheng
    Zhou, Yinhua
    Li, Zhong'an
    CHEMISTRY-A EUROPEAN JOURNAL, 2022, 28 (57)
  • [4] Non-fused ring acceptors for organic solar cells
    Yang, Mingqun
    Wei, Wenkui
    Zhou, Xia
    Wang, Zhiqiang
    Duan, Chunhui
    ENERGY MATERIALS, 2021, 1 (01):
  • [5] Efficient Organic Solar Cells with Non-Fullerene Acceptors
    Li, Shuixing
    Liu, Wenqing
    Li, Chang-Zhi
    Shi, Minmin
    Chen, Hongzheng
    SMALL, 2017, 13 (37)
  • [6] Non-fullerene acceptors for organic solar cells
    Yan, Cenqi
    Barlow, Stephen
    Wang, Zhaohui
    Yan, He
    Jen, Alex K. -Y.
    Marder, Seth R.
    Zhan, Xiaowei
    NATURE REVIEWS MATERIALS, 2018, 3 (03):
  • [7] Molecular Engineering of Unidirectional Non-Fused π-Bridge Containing Asymmetric Non-Fullerene Acceptors for High-Performance Organic Solar Cells
    Saeed, Parsa
    Adnan, Muhammad
    Irshad, Zobia
    Hussain, Riaz
    Darwish, Hany W.
    Hussain, Muzammil
    Ahmed, Mahmood
    Lee, Jae Kwan
    ENERGY TECHNOLOGY, 2025,
  • [8] Organic solar cells based on non-fullerene acceptors of nine fused-ring by modifying end groups
    Xiao, Jingbo
    Yan, Tingting
    Lei, Tao
    Li, Yanbo
    Han, Yufang
    Cao, Liang
    Song, Wei
    Tan, Songting
    Ge, Ziyi
    ORGANIC ELECTRONICS, 2020, 81
  • [9] Non-Fullerene Acceptors with Benzodithiophene-Based Fused Planar Ring Cores for Organic Solar Cells
    Yang, Ning
    Ryu, Du Hyeon
    Lee, Suha
    Bai, Yongqi
    Kim, Seo Il
    Seo, Ji Hoon
    Song, Chang Eun
    Hwang, Do-Hoon
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (17) : 21306 - 21313
  • [10] Chemical Design Rules for Non-Fullerene Acceptors in Organic Solar Cells
    Markina, Anastasia
    Lin, Kun-Han
    Liu, Wenlan
    Poelking, Carl
    Firdaus, Yuliar
    Villalva, Diego Rosas
    Khan, Jafar, I
    Paleti, Sri H. K.
    Harrison, George T.
    Gorenflot, Julien
    Zhang, Weimin
    De Wolf, Stefaan
    McCulloch, Iain
    Anthopoulos, Thomas D.
    Baran, Derya
    Laquai, Frederic
    Andrienko, Denis
    ADVANCED ENERGY MATERIALS, 2021, 11 (44)