Lipid Nanoparticle (LNP) Enables mRNA Delivery for Cancer Therapy

被引:208
作者
Zong, Yan [1 ]
Lin, Yi [1 ]
Wei, Tuo [2 ,3 ,4 ,5 ]
Cheng, Qiang [1 ]
机构
[1] Peking Univ, Coll Future Technol, Dept Biomed Engn, Beijing 100871, Peoples R China
[2] Chinese Acad Sci, Inst Zool, State Key Lab Stem Cell & Reprod Biol, Beijing 100101, Peoples R China
[3] Beijing Inst Stem Cell & Regenerat Med, Beijing 100101, Peoples R China
[4] Chinese Acad Sci, Inst Stem Cell & Regenerat, Beijing 100101, Peoples R China
[5] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
cancer therapy; lipid nanoparticles; mRNA delivery; mRNA therapeutics; RECEPTOR T-CELLS; IN-VIVO; MEDIATED DELIVERY; CO-DELIVERY; SIRNA; OPTIMIZATION; POTENT; IMMUNOTHERAPY; THERAPEUTICS; VITRO;
D O I
10.1002/adma.202303261
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Messenger RNA (mRNA) has received great attention in the prevention and treatment of various diseases due to the success of coronavirus disease 2019 (COVID-19) mRNA vaccines (Comirnaty and Spikevax). To meet the therapeutic purpose, it is required that mRNA must enter the target cells and express sufficient proteins. Therefore, the development of effective delivery systems is necessary and crucial. Lipid nanoparticle (LNP) represents a remarkable vehicle that has indeed accelerated mRNA applications in humans, as several mRNA-based therapies have already been approved or are in clinical trials. In this review, the focus is on mRNA-LNP-mediated anticancer therapy. It summarizes the main development strategies of mRNA-LNP formulations, discusses representative therapeutic approaches in cancer, and points out current challenges and possible future directions of this research field. It is hoped that these delivered messages can help further improve the application of mRNA-LNP technology in cancer therapy. This review summarizes the development of lipid nanoparticle (LNP) for mRNA delivery, including component screening, internal ratio optimization, surface modification, and route of administration. Then, the applications of mRNA-LNP in cancer therapy are reviewed, including vaccines, antibodies, cytokines, chimeric antigen receptor (CAR)-based cell therapy, tumor suppressors, and genome editing. Finally, current challenges and future directions of this field are discussed.image
引用
收藏
页数:27
相关论文
共 215 条
[1]   Lipid nanoparticles technology in vaccines: Shaping the future of prophylactic medicine [J].
Abdellatif, Ahmed A. H. ;
Younis, Mahmoud A. ;
Alsowinea, Abdullah F. ;
Abdallah, Emad M. ;
Abdel-Bakky, Mohamed S. ;
Al-Subaiyel, Amal ;
Hassan, Yasser A. H. ;
Tawfeek, Hesham M. .
COLLOIDS AND SURFACES B-BIOINTERFACES, 2023, 222
[2]   The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs [J].
Akinc, Akin ;
Maier, Martin A. ;
Manoharan, Muthiah ;
Fitzgerald, Kevin ;
Jayaraman, Muthusamy ;
Barros, Scott ;
Ansell, Steven ;
Du, Xinyao ;
Hope, Michael J. ;
Madden, Thomas D. ;
Mui, Barbara L. ;
Semple, Sean C. ;
Tam, Ying K. ;
Ciufolini, Marco ;
Witzigmann, Dominik ;
Kulkarni, Jayesh A. ;
van der Meel, Roy ;
Cullis, Pieter R. .
NATURE NANOTECHNOLOGY, 2019, 14 (12) :1084-1087
[3]   Optimization of phospholipid chemistry for improved lipid nanoparticle (LNP) delivery of messenger RNA (mRNA) [J].
Alvarez-Benedicto, Ester ;
Farbiak, Lukas ;
Ramirez, Martha Marquez ;
Wang, Xu ;
Johnson, Lindsay T. ;
Mian, Osamah ;
Guerrero, Erick D. ;
Siegwart, Daniel J. .
BIOMATERIALS SCIENCE, 2022, 10 (02) :549-559
[4]   Exosomes for mRNA delivery: a novel biotherapeutic strategy with hurdles and hope [J].
Aslan, Cynthia ;
Kiaie, Seyed Hossein ;
Zolbanin, Naime Majidi ;
Lotfinejad, Parisa ;
Ramezani, Reihaneh ;
Kashanchi, Fatah ;
Jafari, Reza .
BMC BIOTECHNOLOGY, 2021, 21 (01)
[5]   A phase 1 trial of lipid-encapsulated mRNA encoding a monoclonal antibody with neutralizing activity against Chikungunya virus [J].
August, Allison ;
Attarwala, Husain Z. ;
Himansu, Sunny ;
Kalidindi, Shiva ;
Lu, Sophia ;
Pajon, Rolando ;
Han, Shu ;
Lecerf, Jean-Michel ;
Tomassini, Joanne E. ;
Hard, Marjie ;
Ptaszek, Leon M. ;
Crowe, James E. ;
Zaks, Tal .
NATURE MEDICINE, 2021, 27 (12) :2224-+
[6]   Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine [J].
Baden, Lindsey R. ;
El Sahly, Hana M. ;
Essink, Brandon ;
Kotloff, Karen ;
Frey, Sharon ;
Novak, Rick ;
Diemert, David ;
Spector, Stephen A. ;
Rouphael, Nadine ;
Creech, C. Buddy ;
McGettigan, John ;
Khetan, Shishir ;
Segall, Nathan ;
Solis, Joel ;
Brosz, Adam ;
Fierro, Carlos ;
Schwartz, Howard ;
Neuzil, Kathleen ;
Corey, Larry ;
Gilbert, Peter ;
Janes, Holly ;
Follmann, Dean ;
Marovich, Mary ;
Mascola, John ;
Polakowski, Laura ;
Ledgerwood, Julie ;
Graham, Barney S. ;
Bennett, Hamilton ;
Pajon, Rolando ;
Knightly, Conor ;
Leav, Brett ;
Deng, Weiping ;
Zhou, Honghong ;
Han, Shu ;
Ivarsson, Melanie ;
Miller, Jacqueline ;
Zaks, Tal .
NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (05) :403-416
[7]   Gene editing for immune cell therapies [J].
Bailey, Stefanie R. ;
Maus, Marcela V. .
NATURE BIOTECHNOLOGY, 2019, 37 (12) :1425-1434
[8]   Lipid Nanoparticle Formulations for Enhanced Co-delivery of siRNA and mRNA [J].
Ball, Rebecca L. ;
Hajj, Khalid A. ;
Vizelman, Jamie ;
Bajaj, Palak ;
Whitehead, Kathryn A. .
NANO LETTERS, 2018, 18 (06) :3814-3822
[9]   The clinical progress of mRNA vaccines and immunotherapies [J].
Barbier, Ann J. ;
Jiang, Allen Yujie ;
Zhang, Peng ;
Wooster, Richard ;
Anderson, Daniel G. .
NATURE BIOTECHNOLOGY, 2022, 40 (06) :840-854
[10]   Mesothelin-Specific Chimeric Antigen Receptor mRNA-Engineered T Cells Induce Antitumor Activity in Solid Malignancies [J].
Beatty, Gregory L. ;
Haas, Andrew R. ;
Maus, Marcela V. ;
Torigian, Drew A. ;
Soulen, Michael C. ;
Plesa, Gabriela ;
Chew, Anne ;
Zhao, Yangbing ;
Levine, Bruce L. ;
Albelda, Steven M. ;
Kalos, Michael ;
June, Carl H. .
CANCER IMMUNOLOGY RESEARCH, 2014, 2 (02) :112-120