Active learning guides discovery of a champion four-metal perovskite oxide for oxygen evolution electrocatalysis

被引:67
作者
Moon, Junseok [1 ,2 ,3 ]
Beker, Wiktor [4 ,5 ]
Siek, Marta [6 ]
Kim, Jiheon [1 ,2 ,3 ]
Lee, Hyeon Seok [1 ,2 ,3 ]
Hyeon, Taeghwan [1 ,2 ,3 ]
Grzybowski, Bartosz A. [5 ,6 ,7 ]
机构
[1] Inst Basic Sci IBS, Ctr Nanoparticle Res, Seoul, South Korea
[2] Seoul Natl Univ SNU, Sch Chem & Biol Engn, Seoul, South Korea
[3] Seoul Natl Univ SNU, Inst Chem Proc, Seoul, South Korea
[4] Allchemy Inc, Highland, IN USA
[5] Polish Acad Sci, Inst Organ Chem, Warsaw, Poland
[6] Inst Basic Sci IBS, Ctr Soft & Living Matter, Ulsan, South Korea
[7] Ulsan Natl Inst Sci & Technol UNIST, Dept Chem, Ulsan, South Korea
关键词
OPTIMIZATION; CATALYSIS; RECONSTRUCTION; GENERATION; REDUCTION;
D O I
10.1038/s41563-023-01707-w
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Multi-metal oxides in general and perovskite oxides in particular have attracted considerable attention as oxygen evolution electrocatalysts. Although numerous theoretical studies have been undertaken, the most promising perovskite-based catalysts continue to emerge from human-driven experimental campaigns rather than data-driven machine learning protocols, which are often limited by the scarcity of experimental data on which to train the models. This work promises to break this impasse by demonstrating that active learning on even small datasets-but supplemented by informative structural-characterization data and coupled with closed-loop experimentation-can yield materials of outstanding performance. The model we develop not only reproduces several non-obvious and actively studied experimental trends but also identifies a composition of a perovskite oxide electrocatalyst exhibiting an intrinsic overpotential at 10 mA cm-2oxide of 391 mV, which is among the lowest known of four-metal perovskite oxides. Multi-metal and perovskite oxides are attractive as oxygen evolution electrocatalysts, and thus far the most promising candidates have emerged from experimental methodologies. Active-learning models supplemented by structural-characterization data and closed-loop experimentation can now identify a perovskite oxide with outstanding performance.
引用
收藏
页码:108 / 115
页数:10
相关论文
共 50 条
[1]   Closed-loop optimization of general reaction conditions for heteroaryl Suzuki-Miyaura coupling [J].
Angello, Nicholas H. ;
Rathore, Vandana ;
Beker, Wiktor ;
Wolos, Agnieszka ;
Jira, Edward R. ;
Roszak, Rafal ;
Wu, Tony C. ;
Schroeder, Charles M. ;
Aspuru-Guzik, Alan ;
Grzybowski, Bartosz A. ;
Burke, Martin D. .
SCIENCE, 2022, 378 (6618) :399-405
[2]   Prediction of Major Regio-, Site-, and Diastereoisomers in Diels-Alder Reactions by Using Machine-Learning: The Importance of Physically Meaningful Descriptors [J].
Beker, Wiktor ;
Gajewska, Ewa P. ;
Badowski, Tomasz ;
Grzybowski, Bartosz A. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2019, 58 (14) :4515-4519
[3]   MECHANISM OF OXYGEN EVOLUTION ON PEROVSKITES [J].
BOCKRIS, JO ;
OTAGAWA, T .
JOURNAL OF PHYSICAL CHEMISTRY, 1983, 87 (15) :2960-2971
[4]   Using nature's blueprint to expand catalysis with Earth-abundant metals [J].
Bullock, R. Morris ;
Chen, Jingguang G. ;
Gagliardi, Laura ;
Chirik, Paul J. ;
Farha, Omar K. ;
Hendon, Christopher H. ;
Jones, Christopher W. ;
Keith, John A. ;
Klosin, Jerzy ;
Minteer, Shelley D. ;
Morris, Robert H. ;
Radosevich, Alexander T. ;
Rauchfuss, Thomas B. ;
Strotman, Neil A. ;
Vojvodic, Aleksandra ;
Ward, Thomas R. ;
Yang, Jenny Y. ;
Surendranath, Yogesh .
SCIENCE, 2020, 369 (6505) :786-+
[5]   Perspective on density functional theory [J].
Burke, Kieron .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (15)
[6]   A robotic platform for flow synthesis of organic compounds informed by AI planning [J].
Coley, Connor W. ;
Thomas, Dale A., III ;
Lummiss, Justin A. M. ;
Jaworski, Jonathan N. ;
Breen, Christopher P. ;
Schultz, Victor ;
Hart, Travis ;
Fishman, Joshua S. ;
Rogers, Luke ;
Gao, Hanyu ;
Hicklin, Robert W. ;
Plehiers, Pieter P. ;
Byington, Joshua ;
Piotti, John S. ;
Green, William H. ;
Hart, A. John ;
Jamison, Timothy F. ;
Jensen, Klavs F. .
SCIENCE, 2019, 365 (6453) :557-+
[7]   Exploiting machine learning for end-to-end drug discovery and development [J].
Ekins, Sean ;
Puhl, Ana C. ;
Zorn, Kimberley M. ;
Lane, Thomas R. ;
Russo, Daniel P. ;
Klein, Jennifer J. ;
Hickey, Anthony J. ;
Clark, Alex M. .
NATURE MATERIALS, 2019, 18 (05) :435-441
[8]  
Fabbri E, 2017, NAT MATER, V16, P925, DOI [10.1038/NMAT4938, 10.1038/nmat4938]
[9]   A Comprehensive Discovery Platform for Organophosphorus Ligands for Catalysis [J].
Gensch, Tobias ;
Gomes, Gabriel dos Passos ;
Friederich, Pascal ;
Peters, Ellyn ;
Gaudin, Theophile ;
Pollice, Robert ;
Jorner, Kjell ;
Nigam, AkshatKumar ;
Lindner-D'Addario, Michael ;
Sigman, Matthew S. ;
Aspuru-Guzik, Alan .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (03) :1205-1217
[10]  
Grimaud A, 2017, NAT CHEM, V9, P457, DOI [10.1038/NCHEM.2695, 10.1038/nchem.2695]