Using Radiomics and Machine Learning Applied to MRI to Predict Response to Neoadjuvant Chemotherapy in Locally Advanced Cervical Cancer

被引:10
作者
Chiappa, Valentina [1 ]
Bogani, Giorgio [1 ]
Interlenghi, Matteo [2 ]
Antisari, Giulia Vittori [3 ]
Salvatore, Christian [2 ,4 ]
Zanchi, Lucia [5 ]
Ludovisi, Manuela [6 ]
Maggiore, Umberto Leone Roberti [1 ]
Calareso, Giuseppina [7 ]
Haeusler, Edward [8 ]
Raspagliesi, Francesco [1 ]
Castiglioni, Isabella [9 ]
机构
[1] Fdn IRCCS Ist Nazl Tumori Milano, Gynecol Oncol, I-20133 Milan, Italy
[2] DeepTrace Technol SRL, I-20126 Milan, Italy
[3] Univ Verona, Azienda Osped Univ Verona, I-37134 Verona, Italy
[4] Univ Sch Adv Studies IUSS Pavia, Dept Sci Technol & Soc, I-27100 Pavia, Italy
[5] Univ Pavia, IRCCS San Matteo Hosp Fdn, Dept Clin Surg Diagnost & Pediat Sci, Unit Obstet & Gynaecol, I-27100 Pavia, Italy
[6] Univ Aquila, Dept Clin Med Life Hlth & Environm Sci, I-67100 Laquila, Italy
[7] Fdn IRCCS Ist Nazl Tumori Milano, Radiol, I-20133 Milan, Italy
[8] Fdn IRCCS Ist Nazl Tumori Milano, Dept Anaesthesiol, I-20133 Milan, Italy
[9] Univ Milano Bicocca, Dept Phys G Occhialini, I-20126 Milan, Italy
关键词
cervical cancer; MRI; radiomics; neoadjuvant chemotherapy; gynecology oncology; RADICAL SURGERY; STAGE IB2; RADIOTHERAPY; CARCINOMA; FEATURES; THERAPY;
D O I
10.3390/diagnostics13193139
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Neoadjuvant chemotherapy plus radical surgery could be a safe alternative to chemo-radiation in cervical cancer patients who are not willing to receive radiotherapy. The response to neoadjuvant chemotherapy is the main factor influencing the need for adjunctive treatments and survival. In the present paper we aim to develop a machine learning model based on cervix magnetic resonance imaging (MRI) images to stratify the single-subject risk of cervical cancer. We collected MRI images from 72 subjects. Among these subjects, 28 patients (38.9%) belonged to the "Not completely responding" class and 44 patients (61.1%) belonged to the 'Completely responding' class according to their response to treatment. This image set was used for the training and cross-validation of different machine learning models. A robust radiomic approach was applied, under the hypothesis that the radiomic features could be able to capture the disease heterogeneity among the two groups. Three models consisting of three ensembles of machine learning classifiers (random forests, support vector machines, and k-nearest neighbor classifiers) were developed for the binary classification task of interest ("Not completely responding" vs. "Completely responding"), based on supervised learning, using response to treatment as the reference standard. The best model showed an ROC-AUC (%) of 83 (majority vote), 82.3 (mean) [79.9-84.6], an accuracy (%) of 74, 74.1 [72.1-76.1], a sensitivity (%) of 71, 73.8 [68.7-78.9], and a specificity (%) of 75, 74.2 [71-77.5]. In conclusion, our preliminary data support the adoption of a radiomic-based approach to predict the response to neoadjuvant chemotherapy.
引用
收藏
页数:11
相关论文
共 29 条
[1]   The Potential of Radiomic-Based Phenotyping in PrecisionMedicine A Review [J].
Aerts, Hugo J. W. L. .
JAMA ONCOLOGY, 2016, 2 (12) :1636-1642
[2]   Radiomics-based prediction of two-year clinical outcome in locally advanced cervical cancer patients undergoing neoadjuvant chemoradiotherapy [J].
Autorino, Rosa ;
Gui, Benedetta ;
Panza, Giulia ;
Boldrini, Luca ;
Cusumano, Davide ;
Russo, Luca ;
Nardangeli, Alessia ;
Persiani, Salvatore ;
Campitelli, Maura ;
Ferrandina, Gabriella ;
Macchia, Gabriella ;
Valentini, Vincenzo ;
Gambacorta, Maria Antonietta ;
Manfredi, Riccardo .
RADIOLOGIA MEDICA, 2022, 127 (05) :498-506
[3]   Revised FIGO staging for carcinoma of the cervix uteri [J].
Bhatla, Neerja ;
Berek, Jonathan S. ;
Cuello Fredes, Mauricio ;
Denny, Lynette A. ;
Grenman, Seija ;
Karunaratne, Kanishka ;
Kehoe, Sean T. ;
Konishi, Ikuo ;
Olawaiye, Alexander B. ;
Prat, Jaime ;
Sankaranarayanan, Rengaswamy .
INTERNATIONAL JOURNAL OF GYNECOLOGY & OBSTETRICS, 2019, 145 (01) :129-135
[4]   Radiomics and Molecular Classification in Endometrial Cancer (The ROME Study): A Step Forward to a Simplified Precision Medicine [J].
Bogani, Giorgio ;
Chiappa, Valentina ;
Lopez, Salvatore ;
Salvatore, Christian ;
Interlenghi, Matteo ;
D'Oria, Ottavia ;
Giannini, Andrea ;
Leone Roberti Maggiore, Umberto ;
Chiarello, Giulia ;
Palladino, Simona ;
Bascio, Ludovica Spano' ;
Castiglioni, Isabella ;
Raspagliesi, Francesco .
HEALTHCARE, 2022, 10 (12)
[5]   Tumor radiomic heterogeneity: Multiparametric functional imaging to characterize variability and predict response following cervical cancer radiation therapy [J].
Bowen, Stephen R. ;
Yuh, William T. C. ;
Hippe, Daniel S. ;
Wu, Wei ;
Partridge, Savannah C. ;
Elias, Saba ;
Jia, Guang ;
Huang, Zhibin ;
Sandison, George A. ;
Nelson, Dennis ;
Knopp, Michael V. ;
Lo, Simon S. ;
Kinahan, Paul E. ;
Mayr, Nina A. .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 47 (05) :1388-1396
[6]   Using rADioMIcs and machine learning with ultrasonography for the differential diagnosis of myometRiAL tumors (the ADMIRAL pilot study). Radiomics and differential diagnosis of myometrial tumors [J].
Chiappa, V ;
Interlenghi, M. ;
Salvatore, C. ;
Bertolina, F. ;
Bogani, G. ;
Ditto, A. ;
Martinelli, F. ;
Castiglioni, I ;
Raspagliesi, F. .
GYNECOLOGIC ONCOLOGY, 2021, 161 (03) :838-844
[7]   A decision support system based on radiomics and machine learning to predict the risk of malignancy of ovarian masses from transvaginal ultrasonography and serum CA-125 [J].
Chiappa, Valentina ;
Interlenghi, Matteo ;
Bogani, Giorgio ;
Salvatore, Christian ;
Bertolina, Francesca ;
Sarpietro, Giuseppe ;
Signorelli, Mauro ;
Ronzulli, Dominique ;
Castiglioni, Isabella ;
Raspagliesi, Francesco .
EUROPEAN RADIOLOGY EXPERIMENTAL, 2021, 5 (01)
[8]   The Adoption of Radiomics and machine learning improves the diagnostic processes of women with Ovarian MAsses (the AROMA pilot study) [J].
Chiappa, Valentina ;
Bogani, Giorgio ;
Interlenghi, Matteo ;
Salvatore, Christian ;
Bertolina, Francesca ;
Sarpietro, Giuseppe ;
Signorelli, Mauro ;
Castiglioni, Isabella ;
Raspagliesi, Francesco .
JOURNAL OF ULTRASOUND, 2021, 24 (04) :429-437
[9]   The European Society of Gynaecological Oncology/European Society for Radiotherapy and Oncology/European Society of Pathology Guidelines for the Management of Patients With Cervical Cancer [J].
Cibula, David ;
Poetter, Richard ;
Planchamp, Francois ;
Avall-Lundqvist, Elisabeth ;
Fischerova, Daniela ;
Meder, Christine Haie ;
Koehler, Christhardt ;
Landoni, Fabio ;
Lax, Sigurd ;
Lindegaard, Jacob Christian ;
Mahantshetty, Umesh ;
Mathevet, Patrice ;
McCluggage, W. Glenn ;
McCormack, Mary ;
Naik, Raj ;
Nout, Remi ;
Pignata, Sandro ;
Ponce, Jordi ;
Querleu, Denis ;
Raspagliesi, Francesco ;
Rodolakis, Alexandros ;
Tamussino, Karl ;
Wimberger, Pauline ;
Raspollini, Maria Rosaria .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2018, 28 (04) :641-655
[10]   PROSPECTIVE SURGICAL PATHOLOGICAL-STUDY OF DISEASE-FREE INTERVAL IN PATIENTS WITH STAGE IB SQUAMOUS-CELL CARCINOMA OF THE CERVIX - A GYNECOLOGIC ONCOLOGY GROUP-STUDY [J].
DELGADO, G ;
BUNDY, B ;
ZAINO, R ;
SEVIN, BU ;
CREASMAN, WT ;
MAJOR, F .
GYNECOLOGIC ONCOLOGY, 1990, 38 (03) :352-357