CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation

被引:22
|
作者
Cai, Ruijie [1 ,2 ]
Lv, Runyu [1 ,2 ]
Shi, Xin'e [1 ,2 ]
Yang, Gongshe [1 ,2 ]
Jin, Jianjun [1 ,2 ]
机构
[1] Northwest A&F Univ, Coll Anim Sci & Technol, Lab Anim Fat Deposit & Muscle Dev, Yangling 712100, Peoples R China
[2] Northwest A&F Univ, Coll Anim Sci & Technol, Key Lab Anim Genet Breeding & Reprod Shaanxi Prov, Yangling 712100, Peoples R China
关键词
CRISPR activation; CRISPR inhibition; histone modification; DNA methylation; transcription regulation; SCALE CRISPR-CAS9 KNOCKOUT; HUMAN GENOME; ENHANCER ELEMENTS; DNA METHYLATION; RNA; ACTIVATION; IDENTIFICATION; CRISPR/CAS9; REPRESSION; EXPRESSION;
D O I
10.3390/ijms241914865
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
CRISPR/Cas9-mediated cleavage of DNA, which depends on the endonuclease activity of Cas9, has been widely used for gene editing due to its excellent programmability and specificity. However, the changes to the DNA sequence that are mediated by CRISPR/Cas9 affect the structures and stability of the genome, which may affect the accuracy of results. Mutations in the RuvC and HNH regions of the Cas9 protein lead to the inactivation of Cas9 into dCas9 with no endonuclease activity. Despite the loss of endonuclease activity, dCas9 can still bind the DNA strand using guide RNA. Recently, proteins with active/inhibitory effects have been linked to the end of the dCas9 protein to form fusion proteins with transcriptional active/inhibitory effects, named CRISPRa and CRISPRi, respectively. These CRISPR tools mediate the transcription activity of protein-coding and non-coding genes by regulating the chromosomal modification states of target gene promoters, enhancers, and other functional elements. Here, we highlight the epigenetic mechanisms and applications of the common CRISPR/dCas9 tools, by which we hope to provide a reference for future related gene regulation, gene function, high-throughput target gene screening, and disease treatment.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Transcriptional regulation by CRISPR/dCas9 in common wheat
    Zhou, Huajie
    Xu, Lei
    Li, Feng
    Li, Yansha
    GENE, 2022, 807
  • [2] Crispr/dCas9 and gene activation
    Akinci, Ersin
    Unal, Pelin
    Badakul, Gamze
    Yildiz, Mehmet
    JOURNAL OF BIOTECHNOLOGY, 2017, 256 : S42 - S42
  • [3] Epigenetic editing by CRISPR/dCas9 in Plasmodium falciparum
    Xiao, Bo
    Yin, Shigang
    Hu, Yang
    Sun, Maoxin
    Wei, Jieqiong
    Huang, Zhenghui
    Wen, Yuhao
    Dai, Xueyu
    Chen, Huiling
    Mu, Jianbing
    Cui, Liwang
    Jiang, Lubin
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (01) : 255 - 260
  • [4] Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing
    C. Moses
    S. I. Hodgetts
    F. Nugent
    G. Ben-Ary
    K. K. Park
    P. Blancafort
    A. R. Harvey
    Scientific Reports, 10
  • [5] Transcriptional repression of PTEN in neural cells using CRISPR/dCas9 epigenetic editing
    Moses, C.
    Hodgetts, S., I
    Nugent, F.
    Ben-Ary, G.
    Park, K. K.
    Blancafort, P.
    Harvey, A. R.
    SCIENTIFIC REPORTS, 2020, 10 (01)
  • [6] Epigenetic control of heparanase expression through CRISPR/dCas9
    Zeng, Guihua
    Liang, Fu-Sen
    Cui, Lina
    CANCER RESEARCH, 2019, 79 (13)
  • [7] Application of Various Delivery Methods for CRISPR/dCas9
    Liu, Zhixi
    Liao, Zhi
    Chen, Yan
    Han, Lizhu
    Yin, Qinan
    Xiao, Hongtao
    MOLECULAR BIOTECHNOLOGY, 2020, 62 (08) : 355 - 363
  • [8] Application of Various Delivery Methods for CRISPR/dCas9
    Zhixi Liu
    Zhi Liao
    Yan Chen
    Lizhu Han
    Qinan Yin
    Hongtao Xiao
    Molecular Biotechnology, 2020, 62 : 355 - 363
  • [9] Competitive dCas9 binding as a mechanism for transcriptional control
    Anderson, Daniel A.
    Voigt, Christopher A.
    MOLECULAR SYSTEMS BIOLOGY, 2021, 17 (11)
  • [10] Modularized CRISPR/dCas9 Effector Toolkit for Target-Specific Gene Regulation
    Agne, Michael
    Blank, Ilona
    Emhardt, Alica J.
    Gaebelein, Christoph G.
    Gawlas, Fenja
    Gillich, Nadine
    Gonschorek, Patrick
    Juretschke, Thomas J.
    Kraemer, Stefan D.
    Louis, Natalie
    Mueller, Anne
    Rudorf, Alina
    Schaefer, Lisa M.
    Scheidmann, Manuel C.
    Schmunk, Lisa J.
    Schwenk, Philipp M.
    Stammnitz, Maximilian R.
    Warmer, Philipp M.
    Weber, Wilfried
    Fischer, Adrian
    Kaufmann, Beate
    Wagner, Hanna J.
    Radziwill, Gerald
    ACS SYNTHETIC BIOLOGY, 2014, 3 (12): : 986 - 989