Multi-level adaptive perception guidance based infrared and visible image fusion

被引:13
作者
Xing, Mengliang [1 ]
Liu, Gang [1 ]
Tang, Haojie [1 ]
Qian, Yao [1 ]
Zhang, Jun [2 ]
机构
[1] Shanghai Univ Elect Power, Sch Automat Engn, Shanghai 200090, Peoples R China
[2] Shanghai JA Solar PV Technol Co LTD, Shanghai 200436, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-scale features; Atrous convolution; Perceptual loss; Adaptive weight; NETWORK; PERFORMANCE; NEST;
D O I
10.1016/j.optlaseng.2023.107804
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The current constraint rules of end-to-end infrared and visible image fusion (IVIF) networks based on deep learning solely focus on the pixel level, disregarding the consideration of deep features and global information. To address this limitation, this paper proposes an multi-level adaptive perception-guided image fusion approach, named MAPFusion. The main idea is to design a specific network structure and use features to guide the training of the network. Specifically, on the one hand, a new loss function strategy is designed, which combines pixel level, structure-level, and feature-level strategies to comprehensively enhance the information of the fused image. In particular, the multi-level adaptive perceptual loss is introduced as a feature-level strategy, which preserves both low-level positional data and high-level semantic data by constraining the original image and fused image features. Moreover, adaptive weights are constructed using the information measure between feature maps, which measure the degree of information preservation of different source images. On the other hand, a new fusion network is proposed, which uses the improved U-Net structure to extract the multi-scale features of the image, and adds the Atrous Spatial Pyramid Pooling (ASPP) to the specific network layer, which can increase the receptive field and effectively take advantage of the global information of the image. Comparative experiments demonstrate that the proposed method effectively utilizes the information existing in infrared and visible images, resulting in superior visual quality and objective evaluation compared to SOTA algorithms. Ablation and supplementary experiments further validate the rationality of the proposed method and its potential for advanced vision tasks.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Multi-Level Adaptive Attention Fusion Network for Infrared and Visible Image Fusion
    Hu, Ziming
    Kong, Quan
    Liao, Qing
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 366 - 370
  • [2] Multi-level optimal fusion algorithm for infrared and visible image
    Jian, Bo-Lin
    Tu, Ching-Che
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (08) : 4209 - 4217
  • [3] A novel infrared and visible image fusion method based on multi-level saliency integration
    Lu, Ruitao
    Gao, Fan
    Yang, Xiaogang
    Fan, Jiwei
    Li, Dalei
    VISUAL COMPUTER, 2023, 39 (06) : 2321 - 2335
  • [4] Infrared and visible image perceptive fusion through multi-level Gaussian curvature filtering image decomposition
    Tan, Wei
    Zhou, Huixin
    Song, Jiangluqi
    Li, Huan
    Yu, Yue
    Du, Juan
    APPLIED OPTICS, 2019, 58 (12) : 3064 - 3073
  • [5] A Multi-Scale Infrared and Visible Image Fusion Network Based on Context Perception
    Zhao, Huixuan
    Cheng, Jinyong
    Du, Rundong
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 395 - 400
  • [6] SeACPFusion: An Adaptive Fusion Network for Infrared and Visible Images based on brightness perception
    Li, Wangjie
    Lv, Xiaoyi
    Zhou, Yaoyong
    Wang, Yunling
    Li, Min
    INFRARED PHYSICS & TECHNOLOGY, 2024, 142
  • [7] Infrared and Visible Image Fusion Based on Image Enhancement and Rolling Guidance Filtering
    Liang Jiaming
    Yang Shen
    Tian Lifan
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (02)
  • [8] AITFuse: Infrared and visible image fusion via adaptive interactive transformer learning
    Wang, Zhishe
    Yang, Fan
    Sun, Jing
    Xu, Jiawei
    Yang, Fengbao
    Yan, Xiaomei
    KNOWLEDGE-BASED SYSTEMS, 2024, 299
  • [9] A multi-weight fusion framework for infrared and visible image fusion
    Zhou, Yiqiao
    He, Kangjian
    Xu, Dan
    Shi, Hongzhen
    Zhang, Hao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (27) : 68931 - 68957
  • [10] Infrared and visible image fusion method based on rolling guidance filter and NSST
    Zhao, Cheng
    Huang, Yongdong
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (06)