Enhancing Performance of Convolutional Neural Network-Based Epileptic Electroencephalogram Diagnosis by Asymmetric Stochastic Resonance

被引:21
作者
Shi, Zhuozheng [1 ]
Liao, Zhiqiang [2 ]
Tabata, Hitoshi [1 ,2 ]
机构
[1] Univ Tokyo, Grad Sch Engn, Dept Bioengn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Grad Sch Engn, Dept Elect Engn & Informat Syst, Bunkyo Ku, Tokyo 1138656, Japan
关键词
Asymmetric stochastic resonance; electroencephalography (EEG); epilepsy; seizure detection; deep learning; AUTOMATIC IDENTIFICATION; EEG; CLASSIFICATION; SEIZURES;
D O I
10.1109/JBHI.2023.3282251
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Epilepsy is a chronic disorder that leads to transient neurological dysfunction and is clinically diagnosed primarily by electroencephalography. Several intelligent systems have been proposed to automatically detect seizures, among which deep convolutional neural networks (CNNs) have shown better performance than traditional machine-learning algorithms. Owing to artifacts and noise, the raw electroencephalogram (EEG) must be preprocessed to improve the signal-to-noise ratio prior to being fed into the CNN classifier. However, because of the spectrum overlapping of uncontrollable noise with EEG, traditional filters cause information loss in EEG; thus, the potential of classifiers cannot be fully exploited. In this study, we propose a stochastic resonance-effect-based EEG preprocessing module composed of three asymmetrical overdamped bistable systems in parallel. By setting different asymmetries for the three parallel units, the inherent noise can be transferred to the different spectral components of the EEG through the asymmetric stochastic resonance effect. In this process, the proposed preprocessing module not only avoids the loss of information of EEG but also provides a CNN with high-quality EEG of diversified frequency information to enhance its performance. By combining the proposed preprocessing module with a residual neural network, we developed an intelligent diagnostic system for predicting seizure onset. The developed system achieved an average sensitivity of 98.96% on the CHB-MIT dataset and 95.45% on the Siena dataset, with a false prediction rate of 0.048/h and 0.033/h, respectively. In addition, a comparative analysis demonstrated the superiority of the developed diagnostic system with the proposed preprocessing module over other existing methods.
引用
收藏
页码:4228 / 4239
页数:12
相关论文
共 50 条
  • [21] Enhancing Skin Lesion Detection: A Multistage Multiclass Convolutional Neural Network-Based Framework
    Ali, Muhammad Umair
    Khalid, Majdi
    Alshanbari, Hanan
    Zafar, Amad
    Lee, Seung Won
    BIOENGINEERING-BASEL, 2023, 10 (12):
  • [22] A Technical Review of Convolutional Neural Network-Based Mammographic Breast Cancer Diagnosis
    Zou, Lian
    Yu, Shaode
    Meng, Tiebao
    Zhang, Zhicheng
    Liang, Xiaokun
    Xie, Yaoqin
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2019, 2019
  • [23] Convolutional Neural Network-based Virtual Screening
    Shan, Wenying
    Li, Xuanyi
    Yao, Hequan
    Lin, Kejiang
    CURRENT MEDICINAL CHEMISTRY, 2021, 28 (10) : 2033 - 2047
  • [24] Random Neural Network Based Epileptic Seizure Episode Detection Exploiting Electroencephalogram Signals
    Shah, Syed Yaseen
    Larijani, Hadi
    Gibson, Ryan M.
    Liarokapis, Dimitrios
    SENSORS, 2022, 22 (07)
  • [25] A One-Dimensional Convolutional Neural Network-Based Method for Diagnosis of Tooth Root Cracks in Asymmetric Spur Gear Pairs
    Kalay, Onur Can
    Karpat, Esin
    Dirik, Ahmet Emir
    Karpat, Fatih
    MACHINES, 2023, 11 (04)
  • [26] A convolutional neural network-based reviews classification method for explainable recommendations
    Zarzour, Hafed
    Al Shboul, Bashar
    Al-Ayyoub, Mahmoud
    Jararweh, Yaser
    2020 SEVENTH INTERNATIONAL CONFERENCE ON SOCIAL NETWORK ANALYSIS, MANAGEMENT AND SECURITY (SNAMS), 2020, : 277 - 281
  • [27] Convolutional Neural Network-based Image Restoration (CNNIR)
    Huang, Zheng-Jie
    Lu, Wei-Hao
    Patel, Brijesh
    Chiu, Po-Yan
    Yang, Tz-Yu
    Tong, Hao Jian
    Bucinskas, Vytautas
    Greitans, Modris
    Lin, Po Ting
    2022 18TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2022), 2022,
  • [28] A Multibranch of Convolutional Neural Network Models for Electroencephalogram-Based Motor Imagery Classification
    Altuwaijri, Ghadir Ali
    Muhammad, Ghulam
    BIOSENSORS-BASEL, 2022, 12 (01):
  • [29] Classification of motor imagery electroencephalogram signals by using a divergence based convolutional neural network
    Dokur, Zumray
    Olmez, Tamer
    APPLIED SOFT COMPUTING, 2021, 113
  • [30] HCRNNIDS: Hybrid Convolutional Recurrent Neural Network-Based Network Intrusion Detection System
    Khan, Muhammad Ashfaq
    PROCESSES, 2021, 9 (05)