Anthropogenic amplification of biogenic secondary organic aerosol production

被引:3
作者
Zheng, Yiqi [1 ,2 ]
Horowitz, Larry W. W. [3 ]
Menzel, Raymond [3 ]
Paynter, David J. [3 ]
Naik, Vaishali [3 ]
Li, Jingyi [4 ]
Mao, Jingqiu [1 ,2 ]
机构
[1] Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK 99775 USA
[2] Univ Alaska Fairbanks, Dept Chem & Biochem, Fairbanks, AK 99775 USA
[3] NOAA Geophys Fluid Dynam Lab, Princeton, NJ USA
[4] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Nanjing, Peoples R China
关键词
NITRATE RADICAL OXIDATION; BIOMASS BURNING EMISSIONS; LAND-USE CHANGE; OBSERVATIONAL CONSTRAINTS; PARTICULATE MATTER; NITROGEN-OXIDES; UNITED-STATES; SOA FORMATION; ALPHA-PINENE; MODEL;
D O I
10.5194/acp-23-8993-2023
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Biogenic secondary organic aerosols (SOAs) contribute to a large fraction of fine aerosols globally, impacting air quality and climate. The formation of biogenic SOA depends on not only emissions of biogenic volatile organic compounds (BVOCs) but also anthropogenic pollutants including primary organic aerosol, sulfur dioxide (SO2), and nitrogen oxides (NOx). However, the anthropogenic impact on biogenic SOA production (AIBS) remains unclear. Here we use the decadal trend and variability in observed organic aerosol (OA) in the southeast US, combined with a global chemistry-climate model, to better constrain AIBS. We show that the reduction in SO2 emissions can only explain 40 % of the decreasing decadal trend of OA in this region, constrained by the low summertime month-to-month variability in surface OA. We hypothesize that the rest of the OA decreasing trend is largely due to a reduction in NOx emissions. By implementing a scheme for monoterpene SOA with enhanced sensitivity to NOx, our model can reproduce the decadal trend and variability in OA in this region. Extending to a centennial scale, our model shows that global SOA production increases by 36 % despite BVOC reductions from the preindustrial period to the present day, largely amplified by AIBS. Our work suggests a strong coupling between anthropogenic and biogenic emissions in biogenic SOA production that is missing from current climate models.
引用
收藏
页码:8993 / 9007
页数:15
相关论文
共 83 条
[1]   Trends in sulfate and organic aerosol mass in the Southeast U.S.: Impact on aerosol optical depth and radiative forcing [J].
Attwood, A. R. ;
Washenfelder, R. A. ;
Brock, C. A. ;
Hu, W. ;
Baumann, K. ;
Campuzano-Jost, P. ;
Day, D. A. ;
Edgerton, E. S. ;
Murphy, D. M. ;
Palm, B. B. ;
McComiskey, A. ;
Wagner, N. L. ;
de Sa, S. S. ;
Ortega, A. ;
Martin, S. T. ;
Jimenez, J. L. ;
Brown, S. S. .
GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (21) :7701-7709
[2]   A new model mechanism for atmospheric oxidation of isoprene: global effects on oxidants, nitrogen oxides, organic products, and secondary organic aerosol [J].
Bates, Kelvin H. ;
Jacob, Daniel J. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2019, 19 (14) :9613-9640
[3]   Kinetic modeling of formation and evaporation of secondary organic aerosol from NO3 oxidation of pure and mixed monoterpenes [J].
Berkemeier, Thomas ;
Takeuchi, Masayuki ;
Eris, Gamze ;
Ng, Nga L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2020, 20 (24) :15513-15535
[4]   Effects of emission reductions on organic aerosol in the southeastern United States [J].
Blanchard, C. L. ;
Hidy, G. M. ;
Shaw, S. ;
Baumann, K. ;
Edgerton, E. S. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (01) :215-238
[5]   Secondary Organic Aerosol (SOA) from Nitrate Radical Oxidation of Monoterpenes: Effects of Temperature, Dilution, and Humidity on Aerosol Formation, Mixing, and Evaporation [J].
Boyd, Christopher M. ;
Nah, Theodora ;
Xu, Lu ;
Berkemeier, Thomas ;
Ng, Nga Lee .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2017, 51 (14) :7831-7841
[6]   To What Extent Can Biogenic SOA be Controlled? [J].
Carlton, Annmarie G. ;
Pinder, Robert W. ;
Bhave, Prakash V. ;
Pouliot, George A. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (09) :3376-3380
[7]   Large contribution of natural aerosols to uncertainty in indirect forcing [J].
Carslaw, K. S. ;
Lee, L. A. ;
Reddington, C. L. ;
Pringle, K. J. ;
Rap, A. ;
Forster, P. M. ;
Mann, G. W. ;
Spracklen, D. V. ;
Woodhouse, M. T. ;
Regayre, L. A. ;
Pierce, J. R. .
NATURE, 2013, 503 (7474) :67-+
[8]   Changing Nature of Organic Carbon over the United States [J].
Christiansen, Amy E. ;
Carlton, Annmarie G. ;
Porter, William C. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2020, 54 (17) :10524-10532
[9]   ACTRIS ACSM intercomparison - Part 1: Reproducibility of concentration and fragment results from 13 individual Quadrupole Aerosol Chemical Speciation Monitors (Q-ACSM) and consistency with co-located instruments [J].
Crenn, V. ;
Sciare, J. ;
Croteau, P. L. ;
Verlhac, S. ;
Froehlich, R. ;
Belis, C. A. ;
Aas, W. ;
Aijala, M. ;
Alastuey, A. ;
Artinano, B. ;
Baisnee, D. ;
Bonnaire, N. ;
Bressi, M. ;
Canagaratna, M. ;
Canonaco, F. ;
Carbone, C. ;
Cavalli, F. ;
Coz, E. ;
Cubison, M. J. ;
Esser-Gietl, J. K. ;
Green, D. C. ;
Gros, V. ;
Heikkinen, L. ;
Herrmann, H. ;
Lunder, C. ;
Minguillon, M. C. ;
Mocnik, G. ;
O'Dowd, C. D. ;
Ovadnevaite, J. ;
Petit, J. -E. ;
Petralia, E. ;
Poulain, L. ;
Priestman, M. ;
Riffault, V. ;
Ripoll, A. ;
Sarda-Esteve, R. ;
Slowik, J. G. ;
Setyan, A. ;
Wiedensohler, A. ;
Baltensperger, U. ;
Prevot, A. S. H. ;
Jayne, J. T. ;
Favez, O. .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2015, 8 (12) :5063-5087
[10]   Autoxidation of Organic Compounds in the Atmosphere [J].
Crounse, John D. ;
Nielsen, Lasse B. ;
Jorgensen, Solvejg ;
Kjaergaard, Henrik G. ;
Wennberg, Paul O. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (20) :3513-3520