Quantitative morphometric analysis of a deep-water channel in the Taranaki Basin, New Zealand

被引:2
|
作者
Wu, Wei [1 ]
Wang, Guangxu [1 ]
Lin, Changsong [2 ]
Liu, Weiqing [1 ]
Li, Quan [1 ,3 ]
Feng, Zhendong [4 ]
Ning, Shuyuan [1 ]
机构
[1] Henan Polytech Univ, Inst Resources & Environm, Jiaozuo 454003, Peoples R China
[2] China Univ Geosci, Sch Ocean Sci, Beijing 100083, Peoples R China
[3] CNOOC Int Ltd, Inst Explorat Technol, Beijing 100028, Peoples R China
[4] Henan Polytech Univ, Coll Safety Sci & Engn, Jiaozuo 454003, Peoples R China
基金
中国国家自然科学基金;
关键词
Quaternary; deep-water channel; geometrical morphology; quantitative analysis; Taranaki Basin; New Zealand; MOUNT MESSENGER FORMATION; SUBMARINE CHANNELS; SEISMIC GEOMORPHOLOGY; ARCHITECTURAL ELEMENTS; DEPOSITIONAL ELEMENTS; SALT TECTONICS; SLOPE; EVOLUTION; MIGRATION; MORPHOLOGY;
D O I
10.1007/s13131-022-2024-2
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The morphological changes of deep-water channels have an important influence on the distributions of channel sand reservoirs, so it is important to explore the morphological change process of deep-water channel for the exploration and development of deep-water oil and gas. Based on a typical sinuous Quaternary channel (Channel I) in the Taranaki Basin, New Zealand, a variety of seismic interpretation techniques were applied to quantitatively characterize the morphological characteristics of the Channel I, and the relationships between the quantitative parameters and the morphological changes of the Channel I, as well as the controlling factors affecting those morphological changes, were discussed. The results are as follows: (1) in the quantitative analysis, six parameters were selected: the channel depth, width, sinuosity, and aspect ratio (width/depth), the channel swing amplitude (& lambda;) and the channel bend frequency (& omega;); (2) according to the quantitative morphological parameters of the channel (mainly including three parameters such as channel sinuosity, & omega; and & lambda;), the Channel I was divided into three types: the low-sinuous channel (LSC), the high-sinuous channel (HSC), the moderate-sinuous channel (MSC). U-shaped channel cross-sections developed in the LSC, V-shaped channel cross-sections developed in the HSC, including inclined-V and symmetric-V cross-sections, and dish-shaped channel cross-sections developed in the MSC; (3) the morphological characteristics of the LSC and MSC were related to their widths and depths, while the morphology of the HSC was greatly affected by the channel width, a change in depth did not affect the HSC morphology; (4) the morphological changes of the Channel I were controlled mainly by the slope gradient, the restricted capacity of the channel and the differential in fluid properties.
引用
收藏
页码:42 / 56
页数:15
相关论文
共 50 条
  • [31] Geomorphological characterization of basal flow markers during recurrent mass movement: A case study from the Taranaki Basin, offshore New Zealand
    Kumar, Priyadarshi Chinmoy
    Omosanya, Kamal'deen O.
    Eruteya, Ovie Emmanuel
    Sain, Kalachand
    BASIN RESEARCH, 2021, 33 (04) : 2358 - 2382
  • [32] Interpreting environments of deposition from facies analysis of outcrop versus seismic reflection data: A cautionary tale from the Mount Messenger Formation, Taranaki Basin (New Zealand)
    Kamaruzaman, Erman H.
    La Croix, Andrew D.
    Kamp, Peter J. J.
    MARINE AND PETROLEUM GEOLOGY, 2024, 167
  • [33] Quantitative Seismic Geomorphology of Four Different Types of the Continental Slope Channel Complexes in the Canterbury Basin, New Zealand
    Harishidayat, Dicky
    Raja, Wasif Rehman
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [34] Integrated Reservoir Characterization Study of the McKee Formation, Onshore Taranaki Basin, New Zealand
    Dong, Swee Poh
    Shalaby, Mohamed R.
    Islam, Md. Aminul
    GEOSCIENCES, 2018, 8 (04)
  • [35] Structural Modeling of the Maui Gas Field, Taranaki Basin, New Zealand
    Akm, Eahsanul Haque
    Md Aminul, Islam
    Mohamed, Ragab Shalaby
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2016, 43 (06) : 965 - 975
  • [36] Sequence Stratigraphy of the Pliocene deposits, Central Taranaki Basin, New Zealand
    Almasgari, Abd Alsalam Abduh Saeed
    Hamzah, Umar
    2016 UKM FST POSTGRADUATE COLLOQUIUM, 2016, 1784
  • [37] Arc magmatism and hydrocarbon generation in the northern Taranaki Basin, New Zealand
    Stagpoole, V
    Funnell, R
    PETROLEUM GEOSCIENCE, 2001, 7 (03) : 255 - 267
  • [38] Critical re-assessment of Middle and Late Miocene submarine fans in offshore southern and western Taranaki Basin, New Zealand, to update the paleogeography
    Kamaruzaman, Erman H.
    La Croix, Andrew D.
    Kamp, Peter J. J.
    MARINE AND PETROLEUM GEOLOGY, 2024, 161
  • [39] Kinematics of Submarine Slope Failures in the Deepwater Taranaki Basin, New Zealand
    Omeru, Tuviere
    Cartwright, Joseph A.
    Bull, Suzanne
    SUBMARINE MASS MOVEMENTS AND THEIR CONSEQUENCES, 2016, 41 : 61 - 70
  • [40] Controls on the architectural evolution of deep-water channel overbank sediment wave fields: insights from the Hikurangi Channel, offshore New Zealand
    Tek, Daniel E.
    McArthur, Adam D.
    Poyatos-More, Miquel
    Colombera, Luca
    Allen, Charlotte
    Patacci, Marco
    McCaffrey, William D.
    NEW ZEALAND JOURNAL OF GEOLOGY AND GEOPHYSICS, 2022, 65 (01) : 141 - 178