Existence and multiplicity of solutions for a class of critical anisotropic elliptic equations of Schrodinger-Kirchhoff-type

被引:25
作者
Chems Eddine, Nabil [1 ]
Nguyen, Phuong Duc [2 ]
Ragusa, Maria Alessandra [2 ,3 ]
机构
[1] Mohammed V Univ, Fac Sci, Dept Math, Rabat, Morocco
[2] Ind Univ Ho Chi Minh City, Fac Fundamental Sci, Ho Chi Minh City, Vietnam
[3] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
关键词
anisotropic variable mean curvature operator anisotropic variable exponent Sobolev spaces; concentration-compactness principle; Dirichlet boundary conditions; Schrodinger-Kirchhoff-typeproblems; (p)over-bar(x)-Laplacian; BREZIS-NIRENBERG RESULT; ELECTRORHEOLOGICAL FLUIDS; P(X)-LAPLACIAN EQUATIONS; VARIABLE EXPONENT; CRITICAL GROWTH; SPACES; FUNCTIONALS; EIGENVALUE;
D O I
10.1002/mma.9474
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we obtain the existence and infinitely many nontrivial solutions for a class of nonlinear critical anisotropic elliptic equations involving variable exponents and two real parameters, via combining the variational method, and the concentration-compactness principle for anisotropic variable exponent under suitable assumptions on the nonlinearities.
引用
收藏
页码:16782 / 16801
页数:20
相关论文
共 56 条
[1]  
Ablowitz M.J., 2004, DISCRETE CONTINUOUS
[2]   Regularity results for electrorheological fluids: the stationary case [J].
Acerbi, E ;
Mingione, G .
COMPTES RENDUS MATHEMATIQUE, 2002, 334 (09) :817-822
[3]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[4]  
Afrouzi G. A., 2018, Z ANGEW MATH PHYS, V1, P69
[5]   EXISTENCE OF SOLUTIONS FOR A CLASS OF p(x)-LAPLACIAN EQUATIONS INVOLVING A CONCAVE-CONVEX NONLINEARITY WITH CRITICAL GROWTH IN RN [J].
Alves, Claudianor O. ;
Ferreira, Marcelo C. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 45 (02) :399-422
[6]   Existence and multiplicity of solutions for a p(x)-Laplacian equation with critical growth [J].
Alves, Claudianor O. ;
Barreiro, Jose L. P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 403 (01) :143-154
[7]  
Alves CO, 2008, DIFFER INTEGRAL EQU, V21, P25
[8]  
Antontsev S.N., 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat, V52, P19, DOI DOI 10.1007/S11565-006-0002-9
[9]  
Antontsev SN., 2002, Appl Mech Rev, V48, P55
[10]  
Bear J., 1972, Dynamics of fluids in porous media