W-shaped chirp free and chirped bright, dark solitons for perturbed nonlinear Schro•dinger equation in nonlinear optical fibers

被引:12
作者
Muniyappan, Annamalai [1 ]
Sharmila, Muthuvel [1 ]
Priya, Elumalai Kaviya [1 ]
Sumithra, Sekar [1 ]
Biswas, Anjan [2 ,3 ,4 ,5 ]
Yildirim, Yakup [6 ,7 ]
Aphane, Maggie [5 ]
Moshokoa, Seithuti P. [8 ]
Alshehri, Hashim M.
机构
[1] Theivanai Ammal Coll Women A, Dept Phys, Villupuram 605401, Tamilnadu, India
[2] Grambling State Univ, Dept Math & Phys, Grambling, LA 71245 USA
[3] King Abdulaziz Univ, Dept Math, Math Modeling & Appl Computat MMAC Res Grp, Jeddah 21589, Saudi Arabia
[4] Dunarea de Jos Univ Galati, Cross Border Fac, Dept Appl Sci, 111 Domneasca St, Galati 800201, Romania
[5] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Medunsa, South Africa
[6] Biruni Univ, Dept Comp Engn, TR-34010 Istanbul, Turkiye
[7] Near East Univ, Dept Math, Nicosia, Cyprus
[8] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
关键词
solitons; Jacobi elliptic function method; NLS equation; differential equation; PULSES;
D O I
10.3176/proc.2023.2.04
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present investigation, we employed the Jacobi elliptic function (JEF) method to invoke the perturbed nonlinear Schro center dot dinger equation with self-steepening (SS), self-phase modulation (SPM), and group velocity dispersion (GVD), which govern the propagation of solitonic pulses in optical fibres. The proposed algorithm proves the existence of the family of solitons in optical fibers. Consequently, chirped and chirp free W-shaped bright, dark soliton solutions are obtained from dn(4), cn(4) and sn(4) functions. The final results are displayed in three-dimensional plots with specific physical values of GVD, SPM and SS for an optical fiber.
引用
收藏
页码:128 / 144
页数:17
相关论文
共 25 条
[1]   Optical solitons for weakly nonlocal Schrodinger equation with parabolic law nonlinearity and external potential [J].
Akinyemi, Lanre ;
Senol, Mehmet ;
Mirzazadeh, Mohammad ;
Eslami, Mostafa .
OPTIK, 2021, 230
[2]   Soliton solutions for fractional DNA Peyrard-Bishop equation via the extended-(G′/G2)-expansion method [J].
Akram, Ghazala ;
Arshed, Saima ;
Imran, Zainab .
PHYSICA SCRIPTA, 2021, 96 (09)
[3]   Chirped femtosecond solitons and double-kink solitons in the cubic-quintic nonlinear Schrodinger equation with self-steepening and self-frequency shift [J].
Alka ;
Goyal, Amit ;
Gupta, Rama ;
Kumar, C. N. ;
Raju, Thokala Soloman .
PHYSICAL REVIEW A, 2011, 84 (06)
[4]   Optical solitons having weak non-local nonlinearity by two integration schemes [J].
Biswas, Anjan ;
Rezazadeh, Hadi ;
Mirzazadeh, Mohammad ;
Eslami, Mostafa ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2018, 164 :380-384
[5]   Optical solitons and complexitons of the Schrodinger-Hirota equation [J].
Biswas, Anjan ;
Jawad, Anwar Ja'afar Muhammad ;
Manrakhan, Wayne N. ;
Sarma, Amarendra K. ;
Khan, Kaisar R. .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (07) :2265-2269
[6]   Bright and dark solitons of the generalized nonlinear Schrodinger's equation [J].
Biswas, Anjan ;
Milovic, Daniela .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (06) :1473-1484
[7]  
Desaix M, 2002, PHYS REV E, V65, DOI 10.1103/PhysRevE.65.056602
[8]  
Kivshar Y S., 2003, Optical Solitons: From Fibers to Photonic Crystals
[9]  
Kumar CN, 1999, PRAMANA-J PHYS, V53, P271
[10]  
Liu W, 2017, ROM J PHYS, V62