Catalytic disconnection of C-O bonds in epoxy resins and composites

被引:129
作者
Ahrens, Alexander [1 ,2 ]
Bonde, Andreas [1 ,2 ]
Sun, Hongwei [1 ,2 ]
Wittig, Nina Kolln [1 ,2 ]
Hammershoj, Hans Christian D. [1 ,2 ]
Batista, Gabriel Martins Ferreira [1 ,2 ]
Sommerfeldt, Andreas [3 ]
Frolich, Simon [3 ]
Birkedal, Henrik [1 ,2 ]
Skrydstrup, Troels [1 ,2 ]
机构
[1] Aarhus Univ, Dept Chem, Aarhus, Denmark
[2] Aarhus Univ, Interdisciplinary Nanosci Ctr, Aarhus, Denmark
[3] Danish Technol Inst, Aarhus, Denmark
基金
新加坡国家研究基金会;
关键词
BISPHENOL-A; CLEAVAGE; PLASTICS; LIGNIN; HYDROGENATION; CHEMISTRY; LINKAGES; POLYMERS; BIOMASS; WASTE;
D O I
10.1038/s41586-023-05944-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fibre-reinforced epoxy composites are well established in regard to load-bearing applications in the aerospace, automotive and wind power industries, owing to their light weight and high durability. These composites are based on thermoset resins embedding glass or carbon fibres(1). In lieu of viable recycling strategies, end-of-use composite-based structures such as wind turbine blades are commonly landfilled(1-4). Because of the negative environmental impact of plastic waste(5,6), the need for circular economies of plastics has become more pressing(7,8). However, recycling thermoset plastics is no trivial matter(1-4). Here we report a transition-metal-catalysed protocol for recovery of the polymer building block bisphenol A and intact fibres from epoxy composites. A Ru-catalysed, dehydrogenation/bond, cleavage/reduction cascade disconnects the C(alkyl)-O bonds of the most common linkages of the polymer. We showcase the application of this methodology to relevant unmodified amine-cured epoxy resins as well as commercial composites, including the shell of a wind turbine blade. Our results demonstrate that chemical recycling approaches for thermoset epoxy resins and composites are achievable.
引用
收藏
页码:730 / 737
页数:9
相关论文
共 48 条
  • [1] Decarbonylation of acetone and carbonate at a pincer-ligated Ru center
    Çelenligil-Çetin, R
    Watson, LA
    Guo, CY
    Foxman, BM
    Ozerov, OV
    [J]. ORGANOMETALLICS, 2005, 24 (02) : 186 - 189
  • [2] Homogeneous Catalytic Hydrogenation of Amides to Amines
    Coetzee, Jacorien
    Dodds, Deborah L.
    Klankermayer, Juergen
    Brosinski, Sandra
    Leitner, Walter
    Slawin, Alexandra M. Z.
    Cole-Hamilton, David J.
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2013, 19 (33) : 11039 - 11050
  • [3] Heteropoly acid catalysts for the synthesis of fragrance compounds from biorenewables: isomerization of limonene oxide
    Costa, Vinicius V.
    da Silva Rocha, Kelly A.
    Kozhevnikov, Ivan V.
    Kozhevnikova, Elena F.
    Gusevskaya, Elena V.
    [J]. CATALYSIS SCIENCE & TECHNOLOGY, 2013, 3 (01) : 244 - 250
  • [4] d'Ambrieres W., 2019, J FIELD ACTIONS, P12
  • [5] An approach to chemical recycling of epoxy resin cured with amine using nitric acid
    Dang, WR
    Kubouchi, M
    Yamamoto, S
    Sembokuya, H
    Tsuda, K
    [J]. POLYMER, 2002, 43 (10) : 2953 - 2958
  • [6] Constituents of aromatic plants: carvacrol
    De Vincenzi, M
    Stammati, A
    De Vincenzi, A
    Silano, M
    [J]. FITOTERAPIA, 2004, 75 (7-8) : 801 - 804
  • [7] Eze WU, 2021, Clean Technol. Recycl, V1, P50, DOI [10.3934/ctr.2021003, DOI 10.3934/CTR.2021003]
  • [8] Bio-based hydrophobic epoxy-amine networks derived from renewable terpenoids
    Garrison, Michael D.
    Harvey, Benjamin G.
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2016, 133 (45)
  • [9] Catalytic Hydrogenation of Polyurethanes to Base Chemicals: From Model Systems to Commercial and End-of-Life Polyurethane Materials
    Gausas, Laurynas
    Kristensen, Steffan K.
    Sun, Hongwei
    Ahrens, Alexander
    Donslund, Bjarke S.
    Lindhardt, Anders T.
    Skrydstrup, Troels
    [J]. JACS AU, 2021, 1 (04): : 517 - 524
  • [10] Production, use, and fate of all plastics ever made
    Geyer, Roland
    Jambeck, Jenna R.
    Law, Kara Lavender
    [J]. SCIENCE ADVANCES, 2017, 3 (07):