Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition

被引:10
|
作者
Hang, Rui [1 ]
Li, MinXian [1 ]
机构
[1] Nanjing Univ Sci & Technol, Nanjing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Action recognition; Adaptive topology; Graph convolution;
D O I
10.1007/978-3-031-26316-3_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition approaches usually construct the skeleton sequence as spatial-temporal graphs and perform graph convolution on these graphs to extract discriminative features. However, due to the fixed topology shared among different poses and the lack of direct long-range temporal dependencies, it is not trivial to learn the robust spatial-temporal feature. Therefore, we present a spatial-temporal adaptive graph convolutional network (STA-GCN) to learn adaptive spatial and temporal topologies and effectively aggregate features for skeleton-based action recognition. The proposed network is composed of spatial adaptive graph convolution (SA-GC) and temporal adaptive graph convolution (TA-GC) with an adaptive topology encoder. The SA-GC can extract the spatial feature for each pose with the spatial adaptive topology, while the TA-GC can learn the temporal feature by modeling the direct long-range temporal dependencies adaptively. On three large-scale skeleton action recognition datasets: NTU RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton, the STA-GCN outperforms the existing state-of-the-art methods. The code is available at https://github.com/hang-rui/STA-GCN.
引用
收藏
页码:172 / 188
页数:17
相关论文
共 50 条
  • [31] Temporal Receptive Field Graph Convolutional Network for Skeleton-based Action Recognition
    Zhang, Qingqi
    Wu, Ren
    Nakata, Mitsuru
    Ge, Qi-Wei
    2024 INTERNATIONAL TECHNICAL CONFERENCE ON CIRCUITS/SYSTEMS, COMPUTERS, AND COMMUNICATIONS, ITC-CSCC 2024, 2024,
  • [32] Multi-Stream and Enhanced Spatial-Temporal Graph Convolution Network for Skeleton-Based Action Recognition
    Li, Fanjia
    Zhu, Aichun
    Xu, Yonggang
    Cui, Ran
    Hua, Gang
    IEEE ACCESS, 2020, 8 : 97757 - 97770
  • [33] Multi-Branch Spatial-Temporal Attention Graph Convolution Network for Skeleton-based Action Recognition
    Wang, Daoshuai
    Li, Dewei
    Guan, Yaonan
    Wang, Gang
    Shao, Haibin
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6487 - 6492
  • [34] Spatial Temporal Graph Deconvolutional Network for Skeleton-Based Human Action Recognition
    Peng, Wei
    Shi, Jingang
    Zhao, Guoying
    IEEE Signal Processing Letters, 2021, 28 : 244 - 248
  • [35] Spatial–Temporal gated graph attention network for skeleton-based action recognition
    Mrugendrasinh Rahevar
    Amit Ganatra
    Pattern Analysis and Applications, 2023, 26 (3) : 929 - 939
  • [36] Skeleton-based action recognition based on spatio-temporal adaptive graph convolutional neural-network
    Cao Y.
    Liu C.
    Huang Z.
    Sheng Y.
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2020, 48 (11): : 5 - 10
  • [37] Skeleton-Based Action Recognition with Shift Graph Convolutional Network
    Cheng, Ke
    Zhang, Yifan
    He, Xiangyu
    Chen, Weihan
    Cheng, Jian
    Lu, Hanqing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 180 - 189
  • [38] Spatial Temporal Graph Deconvolutional Network for Skeleton-Based Human Action Recognition
    Peng, Wei
    Shi, Jingang
    Zhao, Guoying
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 244 - 248
  • [39] A lightweight graph convolutional network for skeleton-based action recognition
    Dinh-Tan Pham
    Quang-Tien Pham
    Tien-Thanh Nguyen
    Thi-Lan Le
    Hai Vu
    Multimedia Tools and Applications, 2023, 82 : 3055 - 3079
  • [40] Shallow Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Wenjie
    Zhang, Jianlin
    Cai, Jingju
    Xu, Zhiyong
    SENSORS, 2021, 21 (02) : 1 - 14