Spatial-Temporal Adaptive Graph Convolutional Network for Skeleton-Based Action Recognition

被引:10
|
作者
Hang, Rui [1 ]
Li, MinXian [1 ]
机构
[1] Nanjing Univ Sci & Technol, Nanjing, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Action recognition; Adaptive topology; Graph convolution;
D O I
10.1007/978-3-031-26316-3_11
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Skeleton-based action recognition approaches usually construct the skeleton sequence as spatial-temporal graphs and perform graph convolution on these graphs to extract discriminative features. However, due to the fixed topology shared among different poses and the lack of direct long-range temporal dependencies, it is not trivial to learn the robust spatial-temporal feature. Therefore, we present a spatial-temporal adaptive graph convolutional network (STA-GCN) to learn adaptive spatial and temporal topologies and effectively aggregate features for skeleton-based action recognition. The proposed network is composed of spatial adaptive graph convolution (SA-GC) and temporal adaptive graph convolution (TA-GC) with an adaptive topology encoder. The SA-GC can extract the spatial feature for each pose with the spatial adaptive topology, while the TA-GC can learn the temporal feature by modeling the direct long-range temporal dependencies adaptively. On three large-scale skeleton action recognition datasets: NTU RGB+D 60, NTU RGB+D 120, and Kinetics Skeleton, the STA-GCN outperforms the existing state-of-the-art methods. The code is available at https://github.com/hang-rui/STA-GCN.
引用
收藏
页码:172 / 188
页数:17
相关论文
共 50 条
  • [21] Attention module-based spatial-temporal graph convolutional networks for skeleton-based action recognition
    Kong, Yinghui
    Li, Li
    Zhang, Ke
    Ni, Qiang
    Han, Jungong
    JOURNAL OF ELECTRONIC IMAGING, 2019, 28 (04)
  • [22] Spatial-temporal graph transformer network for skeleton-based temporal action segmentation
    Xiaoyan Tian
    Ye Jin
    Zhao Zhang
    Peng Liu
    Xianglong Tang
    Multimedia Tools and Applications, 2024, 83 : 44273 - 44297
  • [23] Spatial-temporal graph transformer network for skeleton-based temporal action segmentation
    Tian, Xiaoyan
    Jin, Ye
    Zhang, Zhao
    Liu, Peng
    Tang, Xianglong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 44273 - 44297
  • [24] Enhanced discriminative graph convolutional network with adaptive temporal modelling for skeleton-based action recognition
    Alsarhan, Tamam
    Ali, Usman
    Lu, Hongtao
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2022, 216
  • [25] Multi-scale spatial-temporal convolutional neural network for skeleton-based action recognition
    Cheng, Qin
    Cheng, Jun
    Ren, Ziliang
    Zhang, Qieshi
    Liu, Jianming
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (03) : 1303 - 1315
  • [26] Multi-Scale Spatial Temporal Graph Convolutional Network for Skeleton-Based Action Recognition
    Chen, Zhan
    Li, Sicheng
    Yang, Bing
    Li, Qinghan
    LiU, Hong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 1113 - 1122
  • [27] Spatial-temporal graph neural ODE networks for skeleton-based action recognition
    Pan, Longji
    Lu, Jianguang
    Tang, Xianghong
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [28] A Separable Spatial-Temporal Graph Learning Approach for Skeleton-Based Action Recognition
    Zheng, Hui
    Zhao, Ye-Sheng
    Zhang, Bo
    Shang, Guo-Qiang
    IEEE SENSORS LETTERS, 2024, 8 (11)
  • [29] Spatial-temporal graph neural ODE networks for skeleton-based action recognition
    Longji Pan
    Jianguang Lu
    Xianghong Tang
    Scientific Reports, 14
  • [30] Temporal Receptive Field Graph Convolutional Network for Skeleton-Based Action Recognition
    Zhang, Qingqi
    Wu, Ren
    Nakata, Mitsuru
    Ge, Qi-Wei
    2024 International Technical Conference on Circuits/Systems, Computers, and Communications, ITC-CSCC 2024, 2024,