Injectable 2D flexible hydrogel sheets for optoelectrical/biochemical dual stimulation of neurons

被引:11
作者
Amagat, Jordi [1 ,2 ]
Mueller, Christoph Alexander [1 ]
Jensen, Bjarke Norrehvedde [1 ]
Xiong, Xuya [3 ]
Su, Yingchun [1 ,4 ]
Christensen, Natasja Porskjaer [1 ]
Le Friec, Alice [1 ]
Dong, Mingdong [3 ]
Fang, Ying [5 ,6 ]
Chen, Menglin [1 ,3 ,7 ]
机构
[1] Aarhus Univ, Dept Biol & Chem Engn, Aarhus, Denmark
[2] Univ Chinese Acad Sci, Sino Danish Coll SDC, Beijing 101400, Peoples R China
[3] Aarhus Univ, Interdisciplinary Nanosci Ctr, iNANO, Aarhus, Denmark
[4] KTH Royal Inst Technol, Sch Elect Engn & Comp Sci, Electrum 229, S-16440 Kista, Sweden
[5] Natl Ctr Nanosci & Technol, CAS Ctr Excellence Nanosci, Beijing 100190, Peoples R China
[6] Chinese Acad Sci, CAS Ctr Excellence Brain Sci & Intelligence Techno, Inst Neurosci, Shanghai 200031, Peoples R China
[7] Dept Biol & Chem Engn, Univ 36, DK-8000 Aarhus, Denmark
来源
BIOMATERIALS ADVANCES | 2023年 / 146卷
关键词
Electrospinning; Core-shell fibers; Optoelectrical stimulation; Growth factor release; Neural regeneration; ELECTRICAL-STIMULATION; FUNCTIONAL RECOVERY; NERVE; NANOFIBERS; PHOTOCATALYSTS; FIBERS;
D O I
10.1016/j.bioadv.2023.213284
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Major challenges in developing implanted neural stimulation devices are the invasiveness, complexity, and cost of the implantation procedure. Here, we report an injectable, nanofibrous 2D flexible hydrogel sheet-based neural stimulation device that can be non-invasively implanted via syringe injection for optoelectrical and biochemical dual stimulation of neuron. Specifically, methacrylated gelatin (GelMA)/alginate hydrogel nano -fibers were mechanically reinforced with a poly(lactide-co-epsilon-caprolactone) (PLCL) core by coaxial electro-spinning. The lubricant hydrogel shell enabled not only injectability, but also facile incorporation of functional nanomaterials and bioactives. The nanofibers loaded with photocatatlytic g-C3N4/GO nanoparticles were capable of stimulating neural cells via blue light, with a significant 36.3 % enhancement in neurite extension. Meanwhile, the nerve growth factor (NGF) loaded nanofibers supported a sustained release of NGF with well-maintained function to biochemically stimulate neural differentiation. We have demonstrated the capability of an inject-able, hydrogel nanofibrous, neural stimulation system to support neural stimulation both optoelectrically and biochemically, which represents crucial early steps in a larger effort to create a minimally invasive system for neural stimulation.
引用
收藏
页数:9
相关论文
共 42 条
[1]   One hour electrical stimulation accelerates functional recovery after femoral nerve repair [J].
Ahlborn, Peter ;
Schachner, Melitta ;
Irintchev, Andrey .
EXPERIMENTAL NEUROLOGY, 2007, 208 (01) :137-144
[2]   Programmed dual-electrospun fibers with a 3D substrate-independent customized biomolecule gradient [J].
Amagat, Jordi ;
Jorgensen, Mathias Lindh ;
Zhang, Zhongyang ;
Xu, Ruodan ;
Chen, Menglin .
MATERIALS TODAY COMMUNICATIONS, 2021, 26
[3]   Ruthenium-Decorated Lipid Vesicles: Light-Induced Release of [Ru(terpy)(bpy)(OH2)]2+ and Thermal Back Coordination [J].
Bonnet, Sylvestre ;
Limburg, Bart ;
Meeldijk, Johannes D. ;
Gebbink, Robertus J. M. Klein ;
Killian, J. Antoinette .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (02) :252-261
[4]   Short-Term Electrical Stimulation to Promote Nerve Repair and Functional Recovery in a Rat Model [J].
Calvey, Colleen ;
Zhou, Wenda ;
Stakleff, Kimberly Sloan ;
Sendelbach-Sloan, Patricia ;
Harkins, Amy B. ;
Lanzinger, William ;
Willits, Rebecca Kuntz .
JOURNAL OF HAND SURGERY-AMERICAN VOLUME, 2015, 40 (02) :314-322
[5]   Photosensitivity of Neurons Enabled by Cell-Targeted Gold Nanoparticles [J].
Carvalho-de-Souza, Joao L. ;
Treger, Jeremy S. ;
Dang, Bobo ;
Kent, Stephen B. H. ;
Pepperberg, David R. ;
Bezanilla, Francisco .
NEURON, 2015, 86 (01) :207-217
[6]   Graphitic carbon nitride nanosheets obtained by liquid stripping as efficient photocatalysts under visible light [J].
Fan, Chengkong ;
Miao, Jilin ;
Xu, Guangqing ;
Liu, Jiaqin ;
Lv, Jun ;
Wu, Yucheng .
RSC ADVANCES, 2017, 7 (59) :37185-37193
[7]   Recent advances in bioelectronics chemistry [J].
Fang, Yin ;
Meng, Lingyuan ;
Prominski, Aleksander ;
Schaumann, Erik N. ;
Seebald, Matthew ;
Tian, Bozhi .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (22) :7978-8035
[8]   Soft Graphene Nanofibers Designed for the Acceleration of Nerve Growth and Development [J].
Feng, Zhang-Qi ;
Wang, Ting ;
Zhao, Bin ;
Li, Jiacheng ;
Jin, Lin .
ADVANCED MATERIALS, 2015, 27 (41) :6462-+
[9]   Electrospun Core-Shell Fibers for Robust Silicon Nanoparticle-Based Lithium Ion Battery Anodes [J].
Hwang, Tae Hoon ;
Lee, Yong Min ;
Kong, Byung-Seon ;
Seo, Jin-Seok ;
Choi, Jang Wook .
NANO LETTERS, 2012, 12 (02) :802-807
[10]   Bioactive Electrospun Scaffolds Delivering Growth Factors and Genes for Tissue Engineering Applications [J].
Ji, Wei ;
Sun, Yan ;
Yang, Fang ;
van den Beucken, Jeroen J. J. P. ;
Fan, Mingwen ;
Chen, Zhi ;
Jansen, John A. .
PHARMACEUTICAL RESEARCH, 2011, 28 (06) :1259-1272