Terminal value problem for neutral fractional functional differential equations with Hilfer-Katugampola fractional derivative

被引:0
|
作者
Bouriah, Soufyane [1 ]
Benchohra, Mouffak [2 ]
Ozyurt, Selma Gulyaz [3 ]
机构
[1] Hassiba Benbouali Univ, Dept Math, Fac Exact Sci & Informat, POB 151, Chlef 02000, Algeria
[2] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[3] Sivas Cumhuriyet Univ, Fac Sci, Dept Math, POB 58140, Sivas, Turkiye
关键词
Hilfer-Katugampola fractional derivative; neutral fractional differential equations; existence; uniqueness; fixed point; INTEGRODIFFERENTIAL EQUATIONS; COMPARISON PRINCIPLE; DARBOUX PROBLEM;
D O I
10.2298/FIL2321131B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we establish the existence of solutions for a class of nonlinear neutral fractional dif-ferential equations with terminal condition and Hilfer-Katugampola fractional derivative. The arguments are based upon the Banach contraction principle, and Krasnoselskii's fixed point theorem. An example is included to show the applicability of our results.
引用
收藏
页码:7131 / 7147
页数:17
相关论文
共 50 条
  • [41] Stochastic differential inclusions with Hilfer fractional derivative
    Chaouche, Meryem
    Guendouzi, Toufik
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2022, 49 (01): : 158 - 173
  • [42] FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH NONLOCAL CONDITIONS AND GENERALIZED HILFER FRACTIONAL DERIVATIVE
    Wahash, H. A.
    Abdo, M. S.
    Panchal, S. K.
    UFA MATHEMATICAL JOURNAL, 2019, 11 (04): : 151 - 170
  • [43] Fractional Stochastic Differential Equations with Hilfer Fractional Derivative: Poisson Jumps and Optimal Control
    Rihan, Fathalla A.
    Rajivganthi, Chinnathambi
    Muthukumar, Palanisamy
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2017, 2017
  • [44] A Cauchy problem for fractional evolution equations with Hilfer's fractional derivative on semi-infinite interval
    Zhou, Yong
    He, Jia Wei
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 924 - 961
  • [45] Hilfer fractional neutral stochastic differential equations with non-instantaneous impulses
    Kasinathan, Ramkumar
    Kasinathan, Ravikumar
    Baleanu, Dumitru
    Annamalai, Anguraj
    AIMS MATHEMATICS, 2021, 6 (05): : 4474 - 4491
  • [46] On the nonlinear (k, ψ)-Hilfer fractional differential equations
    Kucche, Kishor D.
    Mali, Ashwini D.
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [47] The non-uniqueness of solution for initial value problem of impulsive differential equations involving higher order Katugampola fractional derivative
    Zhang, Xian-Min
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [48] Boundary Value Problem for Weak Nonlinear Partial Differential Equations of Mixed Type with Fractional Hilfer Operator
    Yuldashev, Tursun K.
    Kadirkulov, Bakhtiyor J.
    AXIOMS, 2020, 9 (02)
  • [49] ON THE BEHAVIOR OF SOLUTIONS OF FRACTIONAL DIFFERENTIAL EQUATIONS ON TIME SCALE VIA HILFER FRACTIONAL DERIVATIVES
    Vivek, Devaraj
    Kanagarajan, Kuppusamy
    Sivasundaram, Seenith
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2018, 21 (04) : 1120 - 1138
  • [50] Analysis of Coupled System of Implicit Fractional Differential Equations Involving Katugampola-Caputo Fractional Derivative
    Ahmad, Manzoor
    Jiang, Jiqiang
    Zada, Akbar
    Shah, Syed Omar
    Xu, Jiafa
    COMPLEXITY, 2020, 2020