Joint Activity Detection and Channel Estimation for Massive IoT Access Based on Millimeter-Wave/Terahertz Multi-Panel Massive MIMO

被引:8
|
作者
Xiu, Hanlin [1 ,2 ]
Gao, Zhen [1 ,2 ]
Liao, Anwen [1 ,2 ]
Mei, Yikun [1 ,2 ]
Zheng, Dezhi [1 ,2 ]
Tan, Shufeng [1 ,2 ]
Di Renzo, Marco [3 ]
Hanzo, Lajos [4 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
[3] Univ Paris Saclay, Lab Signaux & Syst, CNRS, Cent Suplec,Univ Paris Sud, F-91192 Paris, France
[4] Univ Southampton, Sch Elect & Comp Sci, Southampton SO17 1BJ, England
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Antenna arrays; Signal processing algorithms; Radio frequency; Millimeter wave communication; Uplink; Internet of Things; Millimeter wave technology; Active user detection; channel estimation; massive IoT access; millimeter-wave; multi-panel mMIMO; terahertz; USER DETECTION;
D O I
10.1109/TVT.2022.3206492
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The multi-panel array, as a state-of-the-art antenna-in-package technology, is very suitable for millimeter-wave (mmWave)/ terahertz (THz) systems, due to its low-cost deployment and scalable configuration. But in the context of non-uniform array structures it leads to intractable signal processing. Based on such an array structure at the base station, this paper investigates a joint active user detection (AUD) and channel estimation (CE) scheme based on compressive sensing (CS) for application to the massive Internet of Things (IoT). Specifically, by exploiting the structured sparsity of mmWave/THz massive IoT access channels, we firstly formulate the multi-panel massive multiple-input multiple-output (mMIMO)-based joint AUD and CE problem as a multiple measurement vector (MMV)-CS problem. Then, we harness the expectation maximization (EM) algorithm to learn the prior parameters (i.e., the noise variance and the sparsity ratio) and an orthogonal approximate message passing (OAMP)-EM-MMV algorithm is developed to solve this problem. Our simulation results verify the improved AUD and CE performance of the proposed scheme compared to conventional CS-based algorithms.
引用
收藏
页码:1349 / 1354
页数:6
相关论文
共 50 条
  • [21] Millimeter-Wave Channel Estimation with Interference Cancellation and DOA Estimation in Hybrid Massive MIMO Systems
    Liu, Weihan
    Li, Yang
    Yang, Feng
    Ding, Lianghui
    Zhi, Cheng
    2017 9TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2017,
  • [22] A Novel NE-DFT Channel Estimation Scheme for Millimeter-Wave Massive MIMO Vehicular Communications
    Yi, Zhao
    Zou, Weixia
    IEEE ACCESS, 2020, 8 : 74965 - 74976
  • [23] Efficient Channel Estimation for Wideband Millimeter Wave Massive MIMO Systems With Beam Squint
    Song, Yuhui
    Gong, Zijun
    Chen, Yuanzhu
    Li, Cheng
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (05) : 3421 - 3435
  • [24] Joint Activity Detection and Channel Estimation for mmW/THz Wideband Massive Access
    Shao, Xiaodan
    Chen, Xiaoming
    Zhong, Caijun
    Zhang, Zhaoyang
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [25] Tensor-Based Channel Estimation for Millimeter-Wave Massive MIMO by Exploiting Sparsity in Delay-Angular Domain
    Hao, Zihan
    Luo, Ziyan
    Li, Xiaoyu
    Fan, Jun
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (12) : 19259 - 19274
  • [26] Clustered Sparse Bayesian Learning Based Channel Estimation for Millimeter-Wave Massive MIMO Systems
    Wu, Xianda
    Ma, Shaodan
    Yang, Xi
    Yang, Guanghua
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (12) : 12749 - 12764
  • [27] Attention mechanism based CNN channel estimation algorithm in millimeter-wave massive MIMO system
    Liu Z.
    Ma S.
    Liang J.
    Zhu M.
    Yuan L.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2022, 44 (01): : 307 - 312
  • [28] Joint Activity Detection and Channel Estimation in Cell-Free Massive MIMO Networks With Massive Connectivity
    Guo, Mangqing
    Gursoy, M. Cenk
    IEEE TRANSACTIONS ON COMMUNICATIONS, 2022, 70 (01) : 317 - 331
  • [29] An enhanced beamspace channel estimation algorithm for wideband millimeter-wave massive MIMO systems
    Liu, Yang
    Song, Kaipeng
    Luo, Yi
    Han, Ding
    Zhang, Yinghui
    Jin, Minglu
    EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2022, 2022 (01)
  • [30] An enhanced beamspace channel estimation algorithm for wideband millimeter-wave massive MIMO systems
    Yang Liu
    Kaipeng Song
    Yi Luo
    Ding Han
    Yinghui Zhang
    Minglu Jin
    EURASIP Journal on Advances in Signal Processing, 2022