Experimental and numerical study of the synchronization of canards in identical coupled canard-generating Bonhoeffer-van der Pol oscillators

被引:1
作者
Das, Kundan Lal [1 ]
Sekikawa, Munehisa [1 ]
Tsubone, Tadashi [2 ]
Inaba, Naohiko [3 ]
Okazaki, Hideaki [3 ]
机构
[1] Utsunomiya Univ, Grad Sch Reg Dev & Creat, Utsunomiya 3218585, Japan
[2] Nagaoka Univ Technol, Dept Elect Elect & Informat Engn, Nagaoka 9402188, Japan
[3] Shonan Inst Technol, Grad Sch Elect & Informat Engn, Fujisawa 2518511, Japan
关键词
Canards; Coupled oscillator; Complete synchronization; Bonhoeffer-van der Pol oscillators; MIXED-MODE OSCILLATIONS; SINGULAR HOPF-BIFURCATION; PERTURBATIONS; SEQUENCE; SYSTEMS;
D O I
10.1016/j.physleta.2023.128709
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This Letter discusses the complete and in-phase synchronization of canards generated in identical and nearly identical coupled canard-generating Bonhoeffer-van der Pol oscillators. In particular, motivated by the fact that canards are extremely sensitive to variations in the parameters describing the system, we investigate the manner in which synchronization occurs. We show numerically that the complete and in -phase synchronization of canards occurs in systems in which the coupling parameter is relatively small. Furthermore, we show that the complete synchronization of canards can be experimentally observed. Experimentally, it is found, however, that the complete synchronization of canards occurs in systems with stronger coupling. We explain why a strong coupling is necessary to experimentally observe complete synchronization.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] MIXED-MODE OSCILLATIONS IN AN ELECTROCHEMICAL SYSTEM .1. A FAREY SEQUENCE WHICH DOES NOT OCCUR ON A TORUS
    ALBAHADILY, FN
    RINGLAND, J
    SCHELL, M
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1989, 90 (02) : 813 - 821
  • [2] Inflection, Canards and Folded Singularities in Excitable Systems: Application to a 3D FitzHugh-Nagumo Model
    Albizuri, J. Uria
    Desroches, M.
    Krupa, M.
    Rodrigues, S.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (06) : 3265 - 3291
  • [3] Arnold V.I., 1994, ENCYCL MATH SCI, V5
  • [4] LOCAL THEORY FOR SPATIO-TEMPORAL CANARDS AND DELAYED BIFURCATIONS
    Avitabile, Daniele
    Desroches, Mathieu
    Veltz, Romain
    Wechselberger, Martin
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) : 5703 - 5747
  • [5] Period-doubling route to mixed-mode chaos
    Awal, Naziru M.
    Epstein, Irving R.
    [J]. PHYSICAL REVIEW E, 2021, 104 (02)
  • [6] SINGULAR HOPF-BIFURCATION TO RELAXATION OSCILLATIONS .2.
    BAER, SM
    ERNEUX, T
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (06) : 1651 - 1664
  • [7] SINGULAR HOPF-BIFURCATION TO RELAXATION OSCILLATIONS
    BAER, SM
    ERNEUX, T
    [J]. SIAM JOURNAL ON APPLIED MATHEMATICS, 1986, 46 (05) : 721 - 739
  • [8] CRITICAL-DYNAMICS OF THE BONHOEFFER-VANDERPOL EQUATION AND ITS CHAOTIC RESPONSE TO PERIODIC STIMULATION
    BRAAKSMA, B
    GRASMAN, J
    [J]. PHYSICA D, 1993, 68 (02): : 265 - 280
  • [9] Circle maps and the Devil's staircase in a periodically perturbed Oregonator
    Brons, M
    Gross, P
    Bar-Eli, K
    [J]. INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1997, 7 (11): : 2621 - 2628
  • [10] Brons M, 2006, FIELDS I COMMUN, V49, P39