The "Superoncogene" Myc at the Crossroad between Metabolism and Gene Expression in Glioblastoma Multiforme

被引:11
作者
Cencioni, Chiara [1 ]
Scagnoli, Fiorella [2 ]
Spallotta, Francesco [3 ,4 ]
Nasi, Sergio [5 ]
Illi, Barbara [5 ]
机构
[1] Natl Res Council IASI CNR, Inst Syst Anal & Informat, I-00185 Rome, Italy
[2] Axxam SpA, I-20091 Milan, Italy
[3] Sapienza Univ, Dept Biol & Biotechnol Charles Darwin, I-00185 Rome, Italy
[4] Sapienza Univ, Fdn Cenci Bolognetti, Ist Pasteur Italia, I-00185 Rome, Italy
[5] Natl Res Council IBPM CNR, Inst Mol Biol & Pathol, I-00185 Rome, Italy
关键词
glioblastoma; Myc; metabolic control; gene expression; TUMOR INITIATING CELLS; FATTY-ACID OXIDATION; CANCER STEM-CELLS; C-MYC; INDUCED APOPTOSIS; MESSENGER-RNA; HIGH-GRADE; TRANSCRIPTIONAL ACTIVATION; AEROBIC GLYCOLYSIS; DOWN-REGULATION;
D O I
10.3390/ijms24044217
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The concept of the Myc (c-myc, n-myc, l-myc) oncogene as a canonical, DNA-bound transcription factor has consistently changed over the past few years. Indeed, Myc controls gene expression programs at multiple levels: directly binding chromatin and recruiting transcriptional coregulators; modulating the activity of RNA polymerases (RNAPs); and drawing chromatin topology. Therefore, it is evident that Myc deregulation in cancer is a dramatic event. Glioblastoma multiforme (GBM) is the most lethal, still incurable, brain cancer in adults, and it is characterized in most cases by Myc deregulation. Metabolic rewiring typically occurs in cancer cells, and GBM undergoes profound metabolic changes to supply increased energy demand. In nontransformed cells, Myc tightly controls metabolic pathways to maintain cellular homeostasis. Consistently, in Myc-overexpressing cancer cells, including GBM cells, these highly controlled metabolic routes are affected by enhanced Myc activity and show substantial alterations. On the other hand, deregulated cancer metabolism impacts Myc expression and function, placing Myc at the intersection between metabolic pathway activation and gene expression. In this review paper, we summarize the available information on GBM metabolism with a specific focus on the control of the Myc oncogene that, in turn, rules the activation of metabolic signals, ensuring GBM growth.
引用
收藏
页数:35
相关论文
共 331 条
[1]   Targeting glucose metabolism to suppress cancer progression: prospective of anti-glycolytic cancer therapy [J].
Abdel-Wahab, Ali F. ;
Mahmoud, Waheed ;
Al-Harizy, Randa M. .
PHARMACOLOGICAL RESEARCH, 2019, 150
[2]   Is tumor growth sustained by rare cancer stem cells or dominant clones? [J].
Adams, Jerry M. ;
Strasser, Andreas .
CANCER RESEARCH, 2008, 68 (11) :4018-4021
[3]   The ubiquitin ligase HectH9 regulates transcriptional activation by myc and is essential for tumor cell proliferation [J].
Adhikary, S ;
Marinoni, F ;
Hock, A ;
Hulleman, E ;
Popov, N ;
Beier, R ;
Bernard, S ;
Quarto, M ;
Capra, M ;
Goettig, S ;
Kogel, U ;
Scheffner, M ;
Helin, K ;
Eilers, M .
CELL, 2005, 123 (03) :409-421
[4]   PAICS, a Purine Nucleotide Metabolic Enzyme, is Involved in Tumor Growth and the Metastasis of Colorectal Cancer [J].
Agarwal, Sumit ;
Chakravarthi, Balabhadrapatruni V. S. K. ;
Behring, Michael ;
Kim, Hyung-Gyoon ;
Chandrashekar, Darshan S. ;
Gupta, Nirzari ;
Bajpai, Prachi ;
Elkholy, Amr ;
Balasubramanya, Sai A. H. ;
Hardy, Cherlene ;
Al Diffalha, Sameer ;
Varambally, Sooryanarayana ;
Manne, Upender .
CANCERS, 2020, 12 (04)
[5]   Pluripotency gene network dynamics: System views from parametric analysis [J].
Akberdin, Ilya R. ;
Omelyanchuk, Nadezda A. ;
Fadeev, Stanislav I. ;
Leskova, Natalya E. ;
Oschepkova, Evgeniya A. ;
Kazantsev, Fedor V. ;
Matushkin, Yury G. ;
Afonnikov, Dmitry A. ;
Kolchanov, Nikolay A. .
PLOS ONE, 2018, 13 (03)
[6]   Molecular Pathways in Gliomagenesis and Their Relevance to Neuropathologic Diagnosis [J].
Appin, Christina L. ;
Brat, Daniel J. .
ADVANCES IN ANATOMIC PATHOLOGY, 2015, 22 (01) :50-58
[7]   Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages [J].
Arlauckas, Sean P. ;
Garren, Seth B. ;
Garris, Chris S. ;
Kohler, Rainer H. ;
Oh, Juhyun ;
Pittet, Mikael J. ;
Weissleder, Ralph .
THERANOSTICS, 2018, 8 (21) :5842-5854
[8]   EGFR Mutation-Induced Alternative Splicing of Max Contributes to Growth of Glycolytic Tumors in Brain Cancer [J].
Babic, Ivan ;
Anderson, Erik S. ;
Tanaka, Kazuhiro ;
Guo, Deliang ;
Masui, Kenta ;
Li, Bing ;
Zhu, Shaojun ;
Gu, Yuchao ;
Villa, Genaro R. ;
Akhavan, David ;
Nathanson, David ;
Gini, Beatrice ;
Mareninov, Sergey ;
Li, Rui ;
Camacho, Carolina Espindola ;
Kurdistani, Siavash K. ;
Eskin, Ascia ;
Nelson, Stanley F. ;
Yong, William H. ;
Cavenee, Webster K. ;
Cloughesy, Timothy F. ;
Christofk, Heather R. ;
Black, Douglas L. ;
Mische, Paul S. .
CELL METABOLISM, 2013, 17 (06) :1000-1008
[9]   Metabolic heterogeneity and adaptability in brain tumors [J].
Badr, Christian E. ;
Silver, Daniel J. ;
Siebzehnrubl, Florian A. ;
Deleyrolle, Loic P. .
CELLULAR AND MOLECULAR LIFE SCIENCES, 2020, 77 (24) :5101-5119
[10]   Roles of Non-coding RNAs and Angiogenesis in Glioblastoma [J].
Balandeh, Ebrahim ;
Mohammadshafie, Kimia ;
Mahmoudi, Yaser ;
Pourhanifeh, Mohammad Hossein ;
Rajabi, Ali ;
Bahabadi, Zahra Razaghi ;
Mohammadi, Amir Hossein ;
Rahimian, Neda ;
Hamblin, Michael R. ;
Mirzaei, Hamed .
FRONTIERS IN CELL AND DEVELOPMENTAL BIOLOGY, 2021, 9