Loss-tolerant architecture for quantum computing with quantum emitters

被引:0
作者
Lobl, Matthias C. [1 ]
Paesani, Stefano [1 ,2 ]
Sorensen, Anders S. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, Ctr Hybrid Quantum Networks Hy Q, Blegdamsvej 17, DK-2100 Copenhagen O, Denmark
[2] Univ Copenhagen, Niels Bohr Inst, NNF Quantum Comp Programme, Copenhagen, Denmark
关键词
PERCOLATION THRESHOLDS; DOT SPIN; STATE; ENTANGLEMENT; GENERATION; FCC; BCC;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop an architecture for measurement -based quantum computing using photonic quantum emitters. The architecture exploits spin -photon entanglement as resource states and standard Bell measurements of photons for fusing them into a large spin-qubit cluster state. The scheme is tailored to emitters with limited memory capabilities since it only uses an initial non -adaptive (ballistic) fusion process to construct a fully percolated graph state of multiple emitters. By exploring various geometrical constructions for fusing entangled photons from deterministic emitters, we improve the photon loss tolerance significantly compared to similar all-photonic schemes.
引用
收藏
页数:20
相关论文
共 90 条
[1]   Improved simulation of stabilizer circuits [J].
Aaronson, S ;
Gottesman, D .
PHYSICAL REVIEW A, 2004, 70 (05) :052328-1
[2]   Mapping graph state orbits under local complementation [J].
Adcock, Jeremy C. ;
Morley-Short, Sam ;
Dahlberg, Axel ;
Silverstone, Joshua W. .
QUANTUM, 2020, 4
[3]   Cavity-enhanced single-shot readout of a quantum dot spin within 3 nanoseconds [J].
Antoniadis, Nadia O. ;
Hogg, Mark R. ;
Stehl, Willy F. ;
Javadi, Alisa ;
Tomm, Natasha ;
Schott, Ruediger ;
Valentin, Sascha R. ;
Wieck, Andreas D. ;
Ludwig, Arne ;
Warburton, Richard J. .
NATURE COMMUNICATIONS, 2023, 14 (01)
[4]   Entangling a Hole Spin with a Time-Bin Photon: A Waveguide Approach for Quantum Dot Sources of Multiphoton Entanglement [J].
Appel, Martin Hayhurst ;
Tiranov, Alexey ;
Pabst, Simon ;
Chan, Ming Lai ;
Starup, Christian ;
Wang, Ying ;
Midolo, Leonardo ;
Tiurev, Konstantin ;
Scholz, Sven ;
Wieck, Andreas D. ;
Ludwig, Arne ;
Sorensen, Anders Sondberg ;
Lodahl, Peter .
PHYSICAL REVIEW LETTERS, 2022, 128 (23)
[5]   Near-Unity Coupling Efficiency of a Quantum Emitter to a Photonic Crystal Waveguide [J].
Arcari, M. ;
Sollner, I. ;
Javadi, A. ;
Hansen, S. Lindskov ;
Mahmoodian, S. ;
Liu, J. ;
Thyrrestrup, H. ;
Lee, E. H. ;
Song, J. D. ;
Stobbe, S. ;
Lodahl, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (09)
[6]   Fault-tolerant quantum computation with nondeterministic entangling gates [J].
Auger, James M. ;
Anwar, Hussain ;
Gimeno-Segovia, Mercedes ;
Stace, Thomas M. ;
Browne, Dan E. .
PHYSICAL REVIEW A, 2018, 97 (03)
[7]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[8]   Fusion-based quantum computation [J].
Bartolucci, Sara ;
Birchall, Patrick ;
Bombin, Hector ;
Cable, Hugo ;
Dawson, Chris ;
Gimeno-Segovia, Mercedes ;
Johnston, Eric ;
Kieling, Konrad ;
Nickerson, Naomi ;
Pant, Mihir ;
Pastawski, Fernando ;
Rudolph, Terry ;
Sparrow, Chris .
NATURE COMMUNICATIONS, 2023, 14 (01)
[9]   Optimizing Graph Codes for Measurement-Based Loss Tolerance [J].
Bell, Thomas J. ;
Pettersson, Love A. ;
Paesani, Stefano .
PRX QUANTUM, 2023, 4 (02)
[10]   Heralded entanglement between solid-state qubits separated by three metres [J].
Bernien, H. ;
Hensen, B. ;
Pfaff, W. ;
Koolstra, G. ;
Blok, M. S. ;
Robledo, L. ;
Taminiau, T. H. ;
Markham, M. ;
Twitchen, D. J. ;
Childress, L. ;
Hanson, R. .
NATURE, 2013, 497 (7447) :86-90