Learning higher-order features for relation prediction in knowledge hypergraph

被引:4
作者
Wang, Peijie [1 ]
Chen, Jianrui [1 ]
Wang, Zhihui [1 ]
Hao, Fei [1 ]
机构
[1] Shaanxi Normal Univ, Sch Comp Sci, Xian 710119, Peoples R China
基金
中国国家自然科学基金;
关键词
Knowledge hypergraph; Relation prediction; Hypergraph convolutional networks; Higher-order structure; Feature fusion; NETWORKS;
D O I
10.1016/j.knosys.2024.111510
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Knowledge Hypergraph (KHG) is a higher -order extension of the Knowledge Graph (KG), and its relation prediction is based on known data to predict unknown higher -order relations, thereby providing useful knowledge services. However, the existing KHG relation algorithms still have some limitations: (i) most studies only consider the influence of the direct neighbors, and (ii) they ignore the complex interactions existing inside higher -order facts. Based on this, we propose a KHG relation prediction model HoGCNF2 based on higher -order hypergraph convolutional network and feature fusion. Dual -channel hypergraph convolutional network considers the significant and higher -order information propagation of entities. Feature fusion strategy considers different types of higher -order structures. Besides, attention mechanism adaptively assigns weights to the learned embeddings. Extensive experiments demonstrate the superiority of HoGCNF2 on different datasets. Specifically, the MRR result improves by 2.6% on the unfixed dataset FB-AUTO, and improves by 9.7% on the fixed dataset WikiPeople-4. Our implementations are publicly available at: https://doi.org/10.24433/CO. 5584354.v1.
引用
收藏
页数:14
相关论文
共 50 条
[21]   Local Higher-Order Community Detection Based on Fuzzy Membership Functions [J].
Meng, Tao ;
Cai, Lijun ;
He, Tingqin ;
Chen, Lei ;
Deng, Ziyun .
IEEE ACCESS, 2019, 7 :128510-128525
[22]   Local community detection based on higher-order structure and edge information [J].
Shang, Ronghua ;
Zhang, Weitong ;
Zhang, Jingwen ;
Feng, Jie ;
Jiao, Licheng .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 587
[23]   The physics of higher-order interactions in complex systems [J].
Battiston, Federico ;
Amico, Enrico ;
Barrat, Alain ;
Bianconi, Ginestra ;
Ferraz de Arruda, Guilherme ;
Franceschiello, Benedetta ;
Iacopini, Iacopo ;
Kefi, Sonia ;
Latora, Vito ;
Moreno, Yamir ;
Murray, Micah M. ;
Peixoto, Tiago P. ;
Vaccarino, Francesco ;
Petri, Giovanni .
NATURE PHYSICS, 2021, 17 (10) :1093-1098
[24]   Taxicab geometry in table of higher-order elements [J].
Biolek, Zdenek ;
Biolek, Dalibor ;
Biolkova, Viera ;
Kolka, Zdenek .
NONLINEAR DYNAMICS, 2019, 98 (01) :623-636
[25]   Higher-order structure and conformational change in biopharmaceuticals [J].
Orphanou, Charlotte ;
Gervais, David .
JOURNAL OF CHEMICAL TECHNOLOGY AND BIOTECHNOLOGY, 2018, 93 (09) :2477-2485
[26]   Higher-order triadic percolation on random hypergraphs [J].
Sun, Hanlin ;
Bianconi, Ginestra .
PHYSICAL REVIEW E, 2024, 110 (06)
[27]   Dimension reduction in higher-order contagious phenomena [J].
Ghosh, Subrata ;
Khanra, Pitambar ;
Kundu, Prosenjit ;
Ji, Peng ;
Ghosh, Dibakar ;
Hens, Chittaranjan .
CHAOS, 2023, 33 (05)
[28]   Higher-order organization of multivariate time series [J].
Santoro, Andrea ;
Battiston, Federico ;
Petri, Giovanni ;
Amico, Enrico .
NATURE PHYSICS, 2023, 19 (02) :221-+
[29]   Higher-Order Interactions Characterized in Cortical Activity [J].
Yu, Shan ;
Yang, Hongdian ;
Nakahara, Hiroyuki ;
Santos, Gustavo S. ;
Nikolic, Danko ;
Plenz, Dietmar .
JOURNAL OF NEUROSCIENCE, 2011, 31 (48) :17514-17526
[30]   Higher-order interactions promote chimera states [J].
Kundu, Srilena ;
Ghosh, Dibakar .
PHYSICAL REVIEW E, 2022, 105 (04)