Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application

被引:7
|
作者
Aziz, Dara M. [1 ]
Abdulwahid, Rebar T. [2 ,3 ]
Hassan, Sangar A. [1 ]
Aziz, Shujahadeen B. [4 ,5 ]
Singh, Pramod K. [6 ]
Al-Asbahi, Bandar A. [7 ]
Ahmed, Abdullah A. A. [8 ,9 ]
Woo, H. J. [13 ]
Kadir, M. F. Z. [10 ,11 ]
Karim, Wrya O. [12 ]
机构
[1] Univ Raparin, Coll Sci, Dept Chem, Kurdistan Reg Govt, Main St, Ranyah 46012, Iraq
[2] Cihan Univ Sulaimaniya, Coll Hlth Sci, Med Lab Anal Dept, Sulaimaniya 46001, Kurdistan, Iraq
[3] Univ Sulaimani, Coll Educ, Kurdistan Reg Govt, Dept Phys, Old Campus, Sulaymaniyah 46001, Iraq
[4] Kurdistan Reg Govt, Univ Sulaimani, Res & Dev Ctr, Hameed Majid Adv Polymer Mat Res Lab, Sulaymaniyah 46001, Iraq
[5] Charmo Univ, Coll Sci, Dept Phys, Chamchamal 46023, Iraq
[6] Sharda Univ, Ctr Solar Cells & Renewable Energy, Dept Phys, Greater Noida 201310, India
[7] King Saud Univ, Coll Sci, Dept Phys & Astron, PO BOX 2455, Riyadh 11451, Saudi Arabia
[8] Univ Hamburg, Ctr Hybrid Nanostruct CHyN, Hamburg, Germany
[9] Univ Hamburg, Fachbereich Phys, D-20146 Hamburg, Germany
[10] Univ Malaya, Univ Malaya Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[11] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
[12] Univ Sulaimani, Coll Sci, Dept Chem, Kurdistan Reg Govt, Qlyasan St, Sulaimani 46001, Iraq
[13] Univ Malaya, Ctr Ion Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur, Malaysia
关键词
Biopolymers; Plasticizer; Supercapacitor; Lithium perchlorate; Conductivity study; Ion transport parameters; SOLID POLYMER ELECTROLYTE; TRANSPORT-PROPERTIES; IMPEDANCE SPECTROSCOPY; ELECTRICAL-PROPERTIES; ETHYLENE CARBONATE; BLEND; STARCH; LIQUID; PERFORMANCE; GLYCEROL;
D O I
10.1007/s10924-024-03198-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 ohm. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 x 10-4 S cm-1. The high values of both epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} and epsilon ''\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }{\prime }}$$\end{document} at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} of 112.4 at 105 Hz. The shifting of tan delta peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan delta plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F/g.
引用
收藏
页码:3845 / 3868
页数:24
相关论文
共 50 条
  • [41] Synthesis and electrochemical properties of Ti-doped nonstoichiometric LiFePO4 for lithium-ion battery application
    Sun Yu-Heng
    Liu Dong-Qiang
    Yu Ji
    Liu Xing-Quan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2006, 22 (09) : 1711 - 1714
  • [42] Impedance and electrochemical studies of rGO/Li-ion/PANI intercalated polymer electrolyte films for energy storage application
    Das, Anoushka K.
    Abraham, Joselyn Elizabeth
    Pandey, Mayank
    Manoj, B.
    MATERIALS TODAY-PROCEEDINGS, 2020, 24 : 2108 - 2114
  • [43] Compatible Solid Polymer Electrolyte Based on Methyl Cellulose for Energy Storage Application: Structural, Electrical, and Electrochemical Properties
    Aziz, Shujahadeen B.
    Brevik, Iver
    Hamsan, Muhamad H.
    Brza, M. A.
    M. Nofal, Muaffaq
    Abdullah, Aziz M.
    Rostam, Sarkawt
    Al-Zangana, Shakhawan
    Muzakir, Saiful K.
    Kadir, Mohd F. Z.
    POLYMERS, 2020, 12 (10) : 1 - 19
  • [44] Quantitative investigation on the overcharge cycling-induced severe degradation of electrochemical and mechanical properties of lithium-ion battery cells
    Guo, Zixin
    Ma, Zhichao
    Zhao, Wenyang
    Wang, Shenghui
    Zhao, Hongwei
    Ren, Luquan
    ENERGY, 2025, 318
  • [45] Thermal and economic analysis of hybrid energy storage system based on lithium-ion battery and supercapacitor for electric vehicle application
    Mali, Vima
    Tripathi, Brijesh
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2021, 23 (04) : 1135 - 1150
  • [46] Assessing the Reactivity of Hard Carbon Anodes: Linking Material Properties with Electrochemical Response Upon Sodium- and Lithium-Ion Storage
    Moon, Hyein
    Zarrabeitia, Maider
    Frank, Erik
    Bose, Olaf
    Enterria, Marina
    Saurel, Damien
    Hasa, Ivana
    Passerini, Stefano
    BATTERIES & SUPERCAPS, 2021, 4 (06) : 960 - 977
  • [47] Improving the electrochemical properties of a SiO@C/graphite composite anode for high-energy lithium-ion batteries by adding lithium fluoride
    Xia, Mao
    Li, Yi-ran
    Wu, Yu-fan
    Zhang, Hong-bo
    Yang, Jian-kui
    Zhou, Nan
    Zhou, Zhi
    Xiong, Xiang
    APPLIED SURFACE SCIENCE, 2019, 480 : 410 - 418
  • [48] Preparation and electrochemical properties of gel polymer electrolytes using triethylene glycol diacetate-2-propenoic acid butyl ester copolymer for high energy density lithium-ion batteries
    Fan, Huanhuan
    Li, Hongxiao
    Fan, Li-Zhen
    Shi, Qiao
    JOURNAL OF POWER SOURCES, 2014, 249 : 392 - 396
  • [49] Development of eco-friendly SrTiO3/multiwalled carbon nanotube (STO/ MWCNT) composite with enhanced performance for photocatalytic applications in environment remediation and energy storage
    Ganesan, Marimuthu
    Chinnuraj, Indira Priyadharsini
    Rajendran, Ranjith
    Rojviroon, Thammasak
    Rojviroon, Orawan
    Thangavelu, Pazhanivel
    Sirivithayapakorn, Sanya
    DIAMOND AND RELATED MATERIALS, 2025, 155
  • [50] Investigation of Water-Washing Effect on Electrochemical Properties of Ni-Rich NCA Cathode Material for Lithium-Ion Batteries
    Kato, Yukihiro
    Nagahara, Akiko
    Gerile, Naren
    Fujinaka, Shota
    Hamamoto, Nishiki
    Nishimura, Hitoshi
    Nakai, Hideki
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (06)