Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application

被引:7
|
作者
Aziz, Dara M. [1 ]
Abdulwahid, Rebar T. [2 ,3 ]
Hassan, Sangar A. [1 ]
Aziz, Shujahadeen B. [4 ,5 ]
Singh, Pramod K. [6 ]
Al-Asbahi, Bandar A. [7 ]
Ahmed, Abdullah A. A. [8 ,9 ]
Woo, H. J. [13 ]
Kadir, M. F. Z. [10 ,11 ]
Karim, Wrya O. [12 ]
机构
[1] Univ Raparin, Coll Sci, Dept Chem, Kurdistan Reg Govt, Main St, Ranyah 46012, Iraq
[2] Cihan Univ Sulaimaniya, Coll Hlth Sci, Med Lab Anal Dept, Sulaimaniya 46001, Kurdistan, Iraq
[3] Univ Sulaimani, Coll Educ, Kurdistan Reg Govt, Dept Phys, Old Campus, Sulaymaniyah 46001, Iraq
[4] Kurdistan Reg Govt, Univ Sulaimani, Res & Dev Ctr, Hameed Majid Adv Polymer Mat Res Lab, Sulaymaniyah 46001, Iraq
[5] Charmo Univ, Coll Sci, Dept Phys, Chamchamal 46023, Iraq
[6] Sharda Univ, Ctr Solar Cells & Renewable Energy, Dept Phys, Greater Noida 201310, India
[7] King Saud Univ, Coll Sci, Dept Phys & Astron, PO BOX 2455, Riyadh 11451, Saudi Arabia
[8] Univ Hamburg, Ctr Hybrid Nanostruct CHyN, Hamburg, Germany
[9] Univ Hamburg, Fachbereich Phys, D-20146 Hamburg, Germany
[10] Univ Malaya, Univ Malaya Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[11] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
[12] Univ Sulaimani, Coll Sci, Dept Chem, Kurdistan Reg Govt, Qlyasan St, Sulaimani 46001, Iraq
[13] Univ Malaya, Ctr Ion Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur, Malaysia
关键词
Biopolymers; Plasticizer; Supercapacitor; Lithium perchlorate; Conductivity study; Ion transport parameters; SOLID POLYMER ELECTROLYTE; TRANSPORT-PROPERTIES; IMPEDANCE SPECTROSCOPY; ELECTRICAL-PROPERTIES; ETHYLENE CARBONATE; BLEND; STARCH; LIQUID; PERFORMANCE; GLYCEROL;
D O I
10.1007/s10924-024-03198-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 ohm. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 x 10-4 S cm-1. The high values of both epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} and epsilon ''\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }{\prime }}$$\end{document} at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} of 112.4 at 105 Hz. The shifting of tan delta peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan delta plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F/g.
引用
收藏
页码:3845 / 3868
页数:24
相关论文
共 50 条
  • [31] Structural, optical, mechanical, and dielectric properties studies of carboxymethyl cellulose/polyacrylamide/lithium titanate nanocomposites films as an application in energy storage devices
    Morsi, M. A.
    Abdelrazek, E. M.
    Ramadan, R. M.
    Elashmawi, I. S.
    Rajeh, A.
    POLYMER TESTING, 2022, 114
  • [32] Energy Storage Behavior of Lithium-Ion Conducting poly(vinyl alcohol) (PVA): Chitosan(CS)-Based Polymer Blend Electrolyte Membranes: Preparation, Equivalent Circuit Modeling, Ion Transport Parameters, and Dielectric Properties
    Brza, Mohamad
    Aziz, Shujahadeen B.
    Saeed, Salah Raza
    Hamsan, Muhamad H.
    Majid, Siti Rohana
    Abdulwahid, Rebar T.
    Kadir, Mohd F. Z.
    Abdullah, Ranjdar M.
    MEMBRANES, 2020, 10 (12) : 1 - 20
  • [33] Electrical and dielectric enhancements in lithium-ion doped vanadium-zinc-phosphate glass for energy storage applications
    Mandal, Arpan
    Biswas, Dipankar
    Mondal, Rittwick
    Lalwani, Suraj Kumar
    Kabi, Soumyajyoti
    Modak, Nipu
    MATERIALS CHEMISTRY AND PHYSICS, 2025, 333
  • [34] Multiscale Investigation on Electrolyte Systems of [(Solvent plus Additive) + LiPF6] for Application in Lithium-Ion Batteries
    Choobar, Behnam Ghalami
    Modarress, Hamid
    Halladj, Rouein
    Amjad-Iranagh, Spideh
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (36): : 21913 - 21930
  • [35] Improved recoverable energy storage density, breakdown strength, and relaxor nature in eco-friendly K+1-ion rich NBT ferroelectrics
    Sahu, Ranjan Kumar
    Asthana, Saket
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 929
  • [36] From Nature to Energy Storage: A Novel Sustainable 3D Cross-Linked Chitosan-PEGGE-Based Gel Polymer Electrolyte with Excellent Lithium-Ion Transport Properties for Lithium Batteries
    Xu, Dong
    Jin, Jun
    Chen, Chunhua
    Wen, Zhaoyin
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) : 38526 - 38537
  • [37] Cellulose acetate-based polymer electrolyte for energy storage application with the influence of BaTiO3 nanofillers on the electrochemical properties: A progression in biopolymer-EDLC technology
    Gopinath, Gokul
    Ayyasamy, Sakunthala
    Shadap, Matbiangthew
    Shanmugaraj, Pavithra
    Banu, A.
    Hema, M.
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 281
  • [38] Effect of titanium dioxide and zinc oxide fillers on morphology, electrochemical and mechanical properties of the PEO-based nanofibers, applicable as an electrolyte for lithium-ion batteries
    Banitaba, Seyedeh Nooshin
    Semnani, Dariush
    Heydari-Soureshjani, Elahe
    Rezaei, Behzad
    Ensafi, Ali A.
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08)
  • [39] Energy Storage Application of CaO/Graphite Nanocomposite Powder Obtained from Waste Eggshells and Used Lithium-Ion Batteries as a Sustainable Development Approach
    Adaikalam, Kathalingam
    Teli, Aviraj M.
    Marimuthu, Karuppasamy Pandian
    Ramesh, Sivalingam
    Lee, Hyungyil
    Kim, Heung Soo
    Kim, Hyun-Seok
    NANOMATERIALS, 2024, 14 (13)
  • [40] CO2 capture utilizing Li4SiO4 from spent lithium-ion batteries and iron tailings offers eco-friendly benefits
    Liao, Tianqi
    Qian, Yinyin
    Yu, Menghan
    Tang, Aidong
    Yang, Huaming
    CHEMICAL ENGINEERING JOURNAL, 2024, 493