Development and Investigation of Electrochemical and Dielectric Properties of Eco-Friendly Lithium-Ion Conductor Biopolymer Electrolyte for Energy Storage Application

被引:7
|
作者
Aziz, Dara M. [1 ]
Abdulwahid, Rebar T. [2 ,3 ]
Hassan, Sangar A. [1 ]
Aziz, Shujahadeen B. [4 ,5 ]
Singh, Pramod K. [6 ]
Al-Asbahi, Bandar A. [7 ]
Ahmed, Abdullah A. A. [8 ,9 ]
Woo, H. J. [13 ]
Kadir, M. F. Z. [10 ,11 ]
Karim, Wrya O. [12 ]
机构
[1] Univ Raparin, Coll Sci, Dept Chem, Kurdistan Reg Govt, Main St, Ranyah 46012, Iraq
[2] Cihan Univ Sulaimaniya, Coll Hlth Sci, Med Lab Anal Dept, Sulaimaniya 46001, Kurdistan, Iraq
[3] Univ Sulaimani, Coll Educ, Kurdistan Reg Govt, Dept Phys, Old Campus, Sulaymaniyah 46001, Iraq
[4] Kurdistan Reg Govt, Univ Sulaimani, Res & Dev Ctr, Hameed Majid Adv Polymer Mat Res Lab, Sulaymaniyah 46001, Iraq
[5] Charmo Univ, Coll Sci, Dept Phys, Chamchamal 46023, Iraq
[6] Sharda Univ, Ctr Solar Cells & Renewable Energy, Dept Phys, Greater Noida 201310, India
[7] King Saud Univ, Coll Sci, Dept Phys & Astron, PO BOX 2455, Riyadh 11451, Saudi Arabia
[8] Univ Hamburg, Ctr Hybrid Nanostruct CHyN, Hamburg, Germany
[9] Univ Hamburg, Fachbereich Phys, D-20146 Hamburg, Germany
[10] Univ Malaya, Univ Malaya Ctr Ion Liquids UMCiL, Kuala Lumpur 50603, Malaysia
[11] Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur 50603, Malaysia
[12] Univ Sulaimani, Coll Sci, Dept Chem, Kurdistan Reg Govt, Qlyasan St, Sulaimani 46001, Iraq
[13] Univ Malaya, Ctr Ion Univ Malaya, Fac Sci, Dept Phys, Kuala Lumpur, Malaysia
关键词
Biopolymers; Plasticizer; Supercapacitor; Lithium perchlorate; Conductivity study; Ion transport parameters; SOLID POLYMER ELECTROLYTE; TRANSPORT-PROPERTIES; IMPEDANCE SPECTROSCOPY; ELECTRICAL-PROPERTIES; ETHYLENE CARBONATE; BLEND; STARCH; LIQUID; PERFORMANCE; GLYCEROL;
D O I
10.1007/s10924-024-03198-5
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study investigates Li+ ion-conducting biopolymer blend electrolytes-based on chitosan (CS) and potato starch (PS) with glycerol plasticization. The advanced techniques including FTIR, impedance, TNM, LSV, and CV were employed to characterize the compositional and electrochemical properties of the solid films. The FTIR analysis indicates significant influence of glycerol on polymer/salt interactions, evidenced by the shift of FTIR bands to lower wavenumbers, signifying an increase in free ions within the host polymer system. Impedance results indicate that plasticizer addition reduces the bulk resistance to an optimum value of 49 ohm. The calculated DC values demonstrate the suitability of the electrolyte for use in energy storage applications (ESAs) with the highest ionic conductivity of 2.01 x 10-4 S cm-1. The high values of both epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} and epsilon ''\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }{\prime }}$$\end{document} at lower frequencies are due to interfacial polarization and the accumulation of charges, respectively. The sample with the largest plasticizer content has shown the highest epsilon '\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\epsilon }<^>{{\prime }}$$\end{document} of 112.4 at 105 Hz. The shifting of tan delta peaks to the higher frequency side with the increase of plasticizer indicates an increase in the mobility of cations. The combination of tan delta plot and Argand plot was used to explore the dominant mechanism in ion conduction. The electrochemical studies were performed to detect the ability of the films to be used for EDLC applications. The TNM (tion=0.947) and LSV (decomposition voltage = 3.1 V) values favor the films for ESAs. The pattern of CV curves at various scan rates established the successful design of the EDLC device. The calculated capacitance from the area under CV curves is sufficiently high. The capacitance was influenced by scan rates and changed from 12.92 to 38.68 F/g.
引用
收藏
页码:3845 / 3868
页数:24
相关论文
共 50 条
  • [21] Less temperature-dependent high dielectric and energy-storage properties of eco-friendly BiFeO3-BaTiO3-based ceramics
    Akram, Fazli
    Kim, Junchan
    Khan, Salman Ali
    Zeb, Aurang
    Yeo, Hong Goo
    Sung, Yeon Soo
    Song, Tae Kwon
    Kim, Myong-Ho
    Lee, Soonil
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 818
  • [22] Eco-friendly cellulose nanofiber paper-derived separator membranes featuring tunable nanoporous network channels for lithium-ion batteries
    Chun, Sang-Jin
    Choi, Eun-Sun
    Lee, Eun-Ho
    Kim, Jung Hyeun
    Lee, Sun-Young
    Lee, Sang-Young
    JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (32) : 16618 - 16626
  • [23] Facile and Eco-Friendly Synthesis of Finger-Like Co3O4 Nanorods for Electrochemical Energy Storage
    Sun, Shijiao
    Zhao, Xiangyu
    Yang, Meng
    Ma, Liqun
    Shen, Xiaodong
    NANOMATERIALS, 2015, 5 (04): : 2335 - 2347
  • [24] Mulberry-paper-based electrodes with hybrid nanocomposite coatings and their application to eco-friendly energy-storage devices
    Yurim Han
    Heebo Ha
    Thirumalaisamy Suryaprabha
    Peter Baumli
    Byungil Hwang
    Cellulose, 2024, 31 : 1675 - 1685
  • [25] Investigation and application of lithium difluoro(oxalate)borate (LiDFOB) as additive to improve the thermal stability of electrolyte for lithium-ion batteries
    Xu, Mengqing
    Zhou, Liu
    Hao, Liansheng
    Xing, Lidan
    Li, Weishan
    Lucht, Brett L.
    JOURNAL OF POWER SOURCES, 2011, 196 (16) : 6794 - 6801
  • [26] Electrochemical Properties of a TetraPEG-based Gel Electrolyte Containing a Nonflammable Fluorinated Alkyl Phosphate for Safer Lithium-ion Batteries
    Han, Jihae
    Yoshitake, Mari
    Sakai, Takamasa
    Yoshimoto, Nobuko
    Morita, Masayuki
    Fujii, Kenta
    CHEMISTRY LETTERS, 2018, 47 (07) : 909 - 912
  • [27] Parameter sensitivity analysis of an electrochemical-thermal model for energy-storage lithium-ion batteries
    Li, Mingfei
    Sun, Wanmei
    Rao, Mumin
    Cui, Shuxin
    Fu, Qiang
    Chen, Wei
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2023, 237 (07) : 1585 - 1598
  • [28] Synthesis and electrochemical properties of FeCO3 with different morphology for lithium-ion battery application
    Liu, Xiaolin
    Yang, Shuijin
    Chen, Xiao
    Zheng, Hao
    Guo, Zaiping
    Feng, Chuanqi
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 698 : 87 - 93
  • [29] Electrochemical lithium-ion storage properties of quinone molecules encapsulated in single-walled carbon nanotubes
    Ishii, Yosuke
    Tashiro, Kosuke
    Hosoe, Kento
    Al-zubaidi, Ayar
    Kawasaki, Shinji
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (15) : 10411 - 10418
  • [30] Synthesis and electrochemical properties of Pb/Sb@C composite for lithium-ion battery application
    Ma, Zhao
    Chen, Xiao
    Wu, Huimin
    Xiao, Yao
    Feng, Chuanqi
    IONICS, 2020, 26 (11) : 5343 - 5348